2405 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			2405 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
** 2001 September 15
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** This file contains C code routines that are called by the parser
 | 
						|
** to handle SELECT statements in SQLite.
 | 
						|
**
 | 
						|
** $Id: select.c,v 1.1.1.1 2004-03-11 22:22:23 alex Exp $
 | 
						|
*/
 | 
						|
#include "sqliteInt.h"
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Allocate a new Select structure and return a pointer to that
 | 
						|
** structure.
 | 
						|
*/
 | 
						|
Select *sqliteSelectNew(
 | 
						|
  ExprList *pEList,     /* which columns to include in the result */
 | 
						|
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
 | 
						|
  Expr *pWhere,         /* the WHERE clause */
 | 
						|
  ExprList *pGroupBy,   /* the GROUP BY clause */
 | 
						|
  Expr *pHaving,        /* the HAVING clause */
 | 
						|
  ExprList *pOrderBy,   /* the ORDER BY clause */
 | 
						|
  int isDistinct,       /* true if the DISTINCT keyword is present */
 | 
						|
  int nLimit,           /* LIMIT value.  -1 means not used */
 | 
						|
  int nOffset           /* OFFSET value.  0 means no offset */
 | 
						|
){
 | 
						|
  Select *pNew;
 | 
						|
  pNew = sqliteMalloc( sizeof(*pNew) );
 | 
						|
  if( pNew==0 ){
 | 
						|
    sqliteExprListDelete(pEList);
 | 
						|
    sqliteSrcListDelete(pSrc);
 | 
						|
    sqliteExprDelete(pWhere);
 | 
						|
    sqliteExprListDelete(pGroupBy);
 | 
						|
    sqliteExprDelete(pHaving);
 | 
						|
    sqliteExprListDelete(pOrderBy);
 | 
						|
  }else{
 | 
						|
    if( pEList==0 ){
 | 
						|
      pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
 | 
						|
    }
 | 
						|
    pNew->pEList = pEList;
 | 
						|
    pNew->pSrc = pSrc;
 | 
						|
    pNew->pWhere = pWhere;
 | 
						|
    pNew->pGroupBy = pGroupBy;
 | 
						|
    pNew->pHaving = pHaving;
 | 
						|
    pNew->pOrderBy = pOrderBy;
 | 
						|
    pNew->isDistinct = isDistinct;
 | 
						|
    pNew->op = TK_SELECT;
 | 
						|
    pNew->nLimit = nLimit;
 | 
						|
    pNew->nOffset = nOffset;
 | 
						|
    pNew->iLimit = -1;
 | 
						|
    pNew->iOffset = -1;
 | 
						|
  }
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
 | 
						|
** type of join.  Return an integer constant that expresses that type
 | 
						|
** in terms of the following bit values:
 | 
						|
**
 | 
						|
**     JT_INNER
 | 
						|
**     JT_OUTER
 | 
						|
**     JT_NATURAL
 | 
						|
**     JT_LEFT
 | 
						|
**     JT_RIGHT
 | 
						|
**
 | 
						|
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
 | 
						|
**
 | 
						|
** If an illegal or unsupported join type is seen, then still return
 | 
						|
** a join type, but put an error in the pParse structure.
 | 
						|
*/
 | 
						|
int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
 | 
						|
  int jointype = 0;
 | 
						|
  Token *apAll[3];
 | 
						|
  Token *p;
 | 
						|
  static struct {
 | 
						|
    const char *zKeyword;
 | 
						|
    int nChar;
 | 
						|
    int code;
 | 
						|
  } keywords[] = {
 | 
						|
    { "natural", 7, JT_NATURAL },
 | 
						|
    { "left",    4, JT_LEFT|JT_OUTER },
 | 
						|
    { "right",   5, JT_RIGHT|JT_OUTER },
 | 
						|
    { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
 | 
						|
    { "outer",   5, JT_OUTER },
 | 
						|
    { "inner",   5, JT_INNER },
 | 
						|
    { "cross",   5, JT_INNER },
 | 
						|
  };
 | 
						|
  int i, j;
 | 
						|
  apAll[0] = pA;
 | 
						|
  apAll[1] = pB;
 | 
						|
  apAll[2] = pC;
 | 
						|
  for(i=0; i<3 && apAll[i]; i++){
 | 
						|
    p = apAll[i];
 | 
						|
    for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
 | 
						|
      if( p->n==keywords[j].nChar 
 | 
						|
          && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
 | 
						|
        jointype |= keywords[j].code;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
 | 
						|
      jointype |= JT_ERROR;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if(
 | 
						|
     (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
 | 
						|
     (jointype & JT_ERROR)!=0
 | 
						|
  ){
 | 
						|
    static Token dummy = { 0, 0 };
 | 
						|
    char *zSp1 = " ", *zSp2 = " ";
 | 
						|
    if( pB==0 ){ pB = &dummy; zSp1 = 0; }
 | 
						|
    if( pC==0 ){ pC = &dummy; zSp2 = 0; }
 | 
						|
    sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
 | 
						|
       pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
 | 
						|
    pParse->nErr++;
 | 
						|
    jointype = JT_INNER;
 | 
						|
  }else if( jointype & JT_RIGHT ){
 | 
						|
    sqliteErrorMsg(pParse, 
 | 
						|
      "RIGHT and FULL OUTER JOINs are not currently supported");
 | 
						|
    jointype = JT_INNER;
 | 
						|
  }
 | 
						|
  return jointype;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the index of a column in a table.  Return -1 if the column
 | 
						|
** is not contained in the table.
 | 
						|
*/
 | 
						|
static int columnIndex(Table *pTab, const char *zCol){
 | 
						|
  int i;
 | 
						|
  for(i=0; i<pTab->nCol; i++){
 | 
						|
    if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
 | 
						|
  }
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add a term to the WHERE expression in *ppExpr that requires the
 | 
						|
** zCol column to be equal in the two tables pTab1 and pTab2.
 | 
						|
*/
 | 
						|
static void addWhereTerm(
 | 
						|
  const char *zCol,        /* Name of the column */
 | 
						|
  const Table *pTab1,      /* First table */
 | 
						|
  const Table *pTab2,      /* Second table */
 | 
						|
  Expr **ppExpr            /* Add the equality term to this expression */
 | 
						|
){
 | 
						|
  Token dummy;
 | 
						|
  Expr *pE1a, *pE1b, *pE1c;
 | 
						|
  Expr *pE2a, *pE2b, *pE2c;
 | 
						|
  Expr *pE;
 | 
						|
 | 
						|
  dummy.z = zCol;
 | 
						|
  dummy.n = strlen(zCol);
 | 
						|
  dummy.dyn = 0;
 | 
						|
  pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
 | 
						|
  pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
 | 
						|
  dummy.z = pTab1->zName;
 | 
						|
  dummy.n = strlen(dummy.z);
 | 
						|
  pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
 | 
						|
  dummy.z = pTab2->zName;
 | 
						|
  dummy.n = strlen(dummy.z);
 | 
						|
  pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
 | 
						|
  pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
 | 
						|
  pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
 | 
						|
  pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
 | 
						|
  ExprSetProperty(pE, EP_FromJoin);
 | 
						|
  if( *ppExpr ){
 | 
						|
    *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
 | 
						|
  }else{
 | 
						|
    *ppExpr = pE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Set the EP_FromJoin property on all terms of the given expression.
 | 
						|
**
 | 
						|
** The EP_FromJoin property is used on terms of an expression to tell
 | 
						|
** the LEFT OUTER JOIN processing logic that this term is part of the
 | 
						|
** join restriction specified in the ON or USING clause and not a part
 | 
						|
** of the more general WHERE clause.  These terms are moved over to the
 | 
						|
** WHERE clause during join processing but we need to remember that they
 | 
						|
** originated in the ON or USING clause.
 | 
						|
*/
 | 
						|
static void setJoinExpr(Expr *p){
 | 
						|
  while( p ){
 | 
						|
    ExprSetProperty(p, EP_FromJoin);
 | 
						|
    setJoinExpr(p->pLeft);
 | 
						|
    p = p->pRight;
 | 
						|
  } 
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine processes the join information for a SELECT statement.
 | 
						|
** ON and USING clauses are converted into extra terms of the WHERE clause.
 | 
						|
** NATURAL joins also create extra WHERE clause terms.
 | 
						|
**
 | 
						|
** This routine returns the number of errors encountered.
 | 
						|
*/
 | 
						|
static int sqliteProcessJoin(Parse *pParse, Select *p){
 | 
						|
  SrcList *pSrc;
 | 
						|
  int i, j;
 | 
						|
  pSrc = p->pSrc;
 | 
						|
  for(i=0; i<pSrc->nSrc-1; i++){
 | 
						|
    struct SrcList_item *pTerm = &pSrc->a[i];
 | 
						|
    struct SrcList_item *pOther = &pSrc->a[i+1];
 | 
						|
 | 
						|
    if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
 | 
						|
 | 
						|
    /* When the NATURAL keyword is present, add WHERE clause terms for
 | 
						|
    ** every column that the two tables have in common.
 | 
						|
    */
 | 
						|
    if( pTerm->jointype & JT_NATURAL ){
 | 
						|
      Table *pTab;
 | 
						|
      if( pTerm->pOn || pTerm->pUsing ){
 | 
						|
        sqliteErrorMsg(pParse, "a NATURAL join may not have "
 | 
						|
           "an ON or USING clause", 0);
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      pTab = pTerm->pTab;
 | 
						|
      for(j=0; j<pTab->nCol; j++){
 | 
						|
        if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
 | 
						|
          addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Disallow both ON and USING clauses in the same join
 | 
						|
    */
 | 
						|
    if( pTerm->pOn && pTerm->pUsing ){
 | 
						|
      sqliteErrorMsg(pParse, "cannot have both ON and USING "
 | 
						|
        "clauses in the same join");
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Add the ON clause to the end of the WHERE clause, connected by
 | 
						|
    ** and AND operator.
 | 
						|
    */
 | 
						|
    if( pTerm->pOn ){
 | 
						|
      setJoinExpr(pTerm->pOn);
 | 
						|
      if( p->pWhere==0 ){
 | 
						|
        p->pWhere = pTerm->pOn;
 | 
						|
      }else{
 | 
						|
        p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
 | 
						|
      }
 | 
						|
      pTerm->pOn = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Create extra terms on the WHERE clause for each column named
 | 
						|
    ** in the USING clause.  Example: If the two tables to be joined are 
 | 
						|
    ** A and B and the USING clause names X, Y, and Z, then add this
 | 
						|
    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
 | 
						|
    ** Report an error if any column mentioned in the USING clause is
 | 
						|
    ** not contained in both tables to be joined.
 | 
						|
    */
 | 
						|
    if( pTerm->pUsing ){
 | 
						|
      IdList *pList;
 | 
						|
      int j;
 | 
						|
      assert( i<pSrc->nSrc-1 );
 | 
						|
      pList = pTerm->pUsing;
 | 
						|
      for(j=0; j<pList->nId; j++){
 | 
						|
        if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
 | 
						|
            columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
 | 
						|
          sqliteErrorMsg(pParse, "cannot join using column %s - column "
 | 
						|
            "not present in both tables", pList->a[j].zName);
 | 
						|
          return 1;
 | 
						|
        }
 | 
						|
        addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete the given Select structure and all of its substructures.
 | 
						|
*/
 | 
						|
void sqliteSelectDelete(Select *p){
 | 
						|
  if( p==0 ) return;
 | 
						|
  sqliteExprListDelete(p->pEList);
 | 
						|
  sqliteSrcListDelete(p->pSrc);
 | 
						|
  sqliteExprDelete(p->pWhere);
 | 
						|
  sqliteExprListDelete(p->pGroupBy);
 | 
						|
  sqliteExprDelete(p->pHaving);
 | 
						|
  sqliteExprListDelete(p->pOrderBy);
 | 
						|
  sqliteSelectDelete(p->pPrior);
 | 
						|
  sqliteFree(p->zSelect);
 | 
						|
  sqliteFree(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete the aggregate information from the parse structure.
 | 
						|
*/
 | 
						|
static void sqliteAggregateInfoReset(Parse *pParse){
 | 
						|
  sqliteFree(pParse->aAgg);
 | 
						|
  pParse->aAgg = 0;
 | 
						|
  pParse->nAgg = 0;
 | 
						|
  pParse->useAgg = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Insert code into "v" that will push the record on the top of the
 | 
						|
** stack into the sorter.
 | 
						|
*/
 | 
						|
static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
 | 
						|
  char *zSortOrder;
 | 
						|
  int i;
 | 
						|
  zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
 | 
						|
  if( zSortOrder==0 ) return;
 | 
						|
  for(i=0; i<pOrderBy->nExpr; i++){
 | 
						|
    int order = pOrderBy->a[i].sortOrder;
 | 
						|
    int type;
 | 
						|
    int c;
 | 
						|
    if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
 | 
						|
      type = SQLITE_SO_TEXT;
 | 
						|
    }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
 | 
						|
      type = SQLITE_SO_NUM;
 | 
						|
    }else if( pParse->db->file_format>=4 ){
 | 
						|
      type = sqliteExprType(pOrderBy->a[i].pExpr);
 | 
						|
    }else{
 | 
						|
      type = SQLITE_SO_NUM;
 | 
						|
    }
 | 
						|
    if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
 | 
						|
      c = type==SQLITE_SO_TEXT ? 'A' : '+';
 | 
						|
    }else{
 | 
						|
      c = type==SQLITE_SO_TEXT ? 'D' : '-';
 | 
						|
    }
 | 
						|
    zSortOrder[i] = c;
 | 
						|
    sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
 | 
						|
  }
 | 
						|
  zSortOrder[pOrderBy->nExpr] = 0;
 | 
						|
  sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
 | 
						|
  sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine adds a P3 argument to the last VDBE opcode that was
 | 
						|
** inserted. The P3 argument added is a string suitable for the 
 | 
						|
** OP_MakeKey or OP_MakeIdxKey opcodes.  The string consists of
 | 
						|
** characters 't' or 'n' depending on whether or not the various
 | 
						|
** fields of the key to be generated should be treated as numeric
 | 
						|
** or as text.  See the OP_MakeKey and OP_MakeIdxKey opcode
 | 
						|
** documentation for additional information about the P3 string.
 | 
						|
** See also the sqliteAddIdxKeyType() routine.
 | 
						|
*/
 | 
						|
void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
 | 
						|
  int nColumn = pEList->nExpr;
 | 
						|
  char *zType = sqliteMalloc( nColumn+1 );
 | 
						|
  int i;
 | 
						|
  if( zType==0 ) return;
 | 
						|
  for(i=0; i<nColumn; i++){
 | 
						|
    zType[i] = sqliteExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
 | 
						|
  }
 | 
						|
  zType[i] = 0;
 | 
						|
  sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine generates the code for the inside of the inner loop
 | 
						|
** of a SELECT.
 | 
						|
**
 | 
						|
** If srcTab and nColumn are both zero, then the pEList expressions
 | 
						|
** are evaluated in order to get the data for this row.  If nColumn>0
 | 
						|
** then data is pulled from srcTab and pEList is used only to get the
 | 
						|
** datatypes for each column.
 | 
						|
*/
 | 
						|
static int selectInnerLoop(
 | 
						|
  Parse *pParse,          /* The parser context */
 | 
						|
  Select *p,              /* The complete select statement being coded */
 | 
						|
  ExprList *pEList,       /* List of values being extracted */
 | 
						|
  int srcTab,             /* Pull data from this table */
 | 
						|
  int nColumn,            /* Number of columns in the source table */
 | 
						|
  ExprList *pOrderBy,     /* If not NULL, sort results using this key */
 | 
						|
  int distinct,           /* If >=0, make sure results are distinct */
 | 
						|
  int eDest,              /* How to dispose of the results */
 | 
						|
  int iParm,              /* An argument to the disposal method */
 | 
						|
  int iContinue,          /* Jump here to continue with next row */
 | 
						|
  int iBreak              /* Jump here to break out of the inner loop */
 | 
						|
){
 | 
						|
  Vdbe *v = pParse->pVdbe;
 | 
						|
  int i;
 | 
						|
 | 
						|
  if( v==0 ) return 0;
 | 
						|
  assert( pEList!=0 );
 | 
						|
 | 
						|
  /* If there was a LIMIT clause on the SELECT statement, then do the check
 | 
						|
  ** to see if this row should be output.
 | 
						|
  */
 | 
						|
  if( pOrderBy==0 ){
 | 
						|
    if( p->iOffset>=0 ){
 | 
						|
      int addr = sqliteVdbeCurrentAddr(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+2);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
 | 
						|
    }
 | 
						|
    if( p->iLimit>=0 ){
 | 
						|
      sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Pull the requested columns.
 | 
						|
  */
 | 
						|
  if( nColumn>0 ){
 | 
						|
    for(i=0; i<nColumn; i++){
 | 
						|
      sqliteVdbeAddOp(v, OP_Column, srcTab, i);
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    nColumn = pEList->nExpr;
 | 
						|
    for(i=0; i<pEList->nExpr; i++){
 | 
						|
      sqliteExprCode(pParse, pEList->a[i].pExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the DISTINCT keyword was present on the SELECT statement
 | 
						|
  ** and this row has been seen before, then do not make this row
 | 
						|
  ** part of the result.
 | 
						|
  */
 | 
						|
  if( distinct>=0 && pEList && pEList->nExpr>0 ){
 | 
						|
#if NULL_ALWAYS_DISTINCT
 | 
						|
    sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
 | 
						|
#endif
 | 
						|
    sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
 | 
						|
    if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
 | 
						|
    sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
 | 
						|
    sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
 | 
						|
    sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  switch( eDest ){
 | 
						|
    /* In this mode, write each query result to the key of the temporary
 | 
						|
    ** table iParm.
 | 
						|
    */
 | 
						|
    case SRT_Union: {
 | 
						|
      sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
 | 
						|
      sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Store the result as data using a unique key.
 | 
						|
    */
 | 
						|
    case SRT_Table:
 | 
						|
    case SRT_TempTable: {
 | 
						|
      sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
						|
      if( pOrderBy ){
 | 
						|
        pushOntoSorter(pParse, v, pOrderBy);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_Pull, 1, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Construct a record from the query result, but instead of
 | 
						|
    ** saving that record, use it as a key to delete elements from
 | 
						|
    ** the temporary table iParm.
 | 
						|
    */
 | 
						|
    case SRT_Except: {
 | 
						|
      int addr;
 | 
						|
      addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
 | 
						|
      sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
 | 
						|
    ** then there should be a single item on the stack.  Write this
 | 
						|
    ** item into the set table with bogus data.
 | 
						|
    */
 | 
						|
    case SRT_Set: {
 | 
						|
      int addr1 = sqliteVdbeCurrentAddr(v);
 | 
						|
      int addr2;
 | 
						|
      assert( nColumn==1 );
 | 
						|
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
 | 
						|
      if( pOrderBy ){
 | 
						|
        pushOntoSorter(pParse, v, pOrderBy);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
 | 
						|
      }
 | 
						|
      sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If this is a scalar select that is part of an expression, then
 | 
						|
    ** store the results in the appropriate memory cell and break out
 | 
						|
    ** of the scan loop.
 | 
						|
    */
 | 
						|
    case SRT_Mem: {
 | 
						|
      assert( nColumn==1 );
 | 
						|
      if( pOrderBy ){
 | 
						|
        pushOntoSorter(pParse, v, pOrderBy);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
 | 
						|
        sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Send the data to the callback function.
 | 
						|
    */
 | 
						|
    case SRT_Callback:
 | 
						|
    case SRT_Sorter: {
 | 
						|
      if( pOrderBy ){
 | 
						|
        sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
 | 
						|
        pushOntoSorter(pParse, v, pOrderBy);
 | 
						|
      }else{
 | 
						|
        assert( eDest==SRT_Callback );
 | 
						|
        sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Invoke a subroutine to handle the results.  The subroutine itself
 | 
						|
    ** is responsible for popping the results off of the stack.
 | 
						|
    */
 | 
						|
    case SRT_Subroutine: {
 | 
						|
      if( pOrderBy ){
 | 
						|
        sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
						|
        pushOntoSorter(pParse, v, pOrderBy);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Discard the results.  This is used for SELECT statements inside
 | 
						|
    ** the body of a TRIGGER.  The purpose of such selects is to call
 | 
						|
    ** user-defined functions that have side effects.  We do not care
 | 
						|
    ** about the actual results of the select.
 | 
						|
    */
 | 
						|
    default: {
 | 
						|
      assert( eDest==SRT_Discard );
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** If the inner loop was generated using a non-null pOrderBy argument,
 | 
						|
** then the results were placed in a sorter.  After the loop is terminated
 | 
						|
** we need to run the sorter and output the results.  The following
 | 
						|
** routine generates the code needed to do that.
 | 
						|
*/
 | 
						|
static void generateSortTail(
 | 
						|
  Select *p,       /* The SELECT statement */
 | 
						|
  Vdbe *v,         /* Generate code into this VDBE */
 | 
						|
  int nColumn,     /* Number of columns of data */
 | 
						|
  int eDest,       /* Write the sorted results here */
 | 
						|
  int iParm        /* Optional parameter associated with eDest */
 | 
						|
){
 | 
						|
  int end1 = sqliteVdbeMakeLabel(v);
 | 
						|
  int end2 = sqliteVdbeMakeLabel(v);
 | 
						|
  int addr;
 | 
						|
  if( eDest==SRT_Sorter ) return;
 | 
						|
  sqliteVdbeAddOp(v, OP_Sort, 0, 0);
 | 
						|
  addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
 | 
						|
  if( p->iOffset>=0 ){
 | 
						|
    sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+4);
 | 
						|
    sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_Goto, 0, addr);
 | 
						|
  }
 | 
						|
  if( p->iLimit>=0 ){
 | 
						|
    sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, end2);
 | 
						|
  }
 | 
						|
  switch( eDest ){
 | 
						|
    case SRT_Callback: {
 | 
						|
      sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SRT_Table:
 | 
						|
    case SRT_TempTable: {
 | 
						|
      sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pull, 1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SRT_Set: {
 | 
						|
      assert( nColumn==1 );
 | 
						|
      sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SRT_Mem: {
 | 
						|
      assert( nColumn==1 );
 | 
						|
      sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, end1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SRT_Subroutine: {
 | 
						|
      int i;
 | 
						|
      for(i=0; i<nColumn; i++){
 | 
						|
        sqliteVdbeAddOp(v, OP_Column, -1-i, i);
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      /* Do nothing */
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  sqliteVdbeAddOp(v, OP_Goto, 0, addr);
 | 
						|
  sqliteVdbeResolveLabel(v, end2);
 | 
						|
  sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
  sqliteVdbeResolveLabel(v, end1);
 | 
						|
  sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code that will tell the VDBE the datatypes of
 | 
						|
** columns in the result set.
 | 
						|
**
 | 
						|
** This routine only generates code if the "PRAGMA show_datatypes=on"
 | 
						|
** has been executed.  The datatypes are reported out in the azCol
 | 
						|
** parameter to the callback function.  The first N azCol[] entries
 | 
						|
** are the names of the columns, and the second N entries are the
 | 
						|
** datatypes for the columns.
 | 
						|
**
 | 
						|
** The "datatype" for a result that is a column of a type is the
 | 
						|
** datatype definition extracted from the CREATE TABLE statement.
 | 
						|
** The datatype for an expression is either TEXT or NUMERIC.  The
 | 
						|
** datatype for a ROWID field is INTEGER.
 | 
						|
*/
 | 
						|
static void generateColumnTypes(
 | 
						|
  Parse *pParse,      /* Parser context */
 | 
						|
  SrcList *pTabList,  /* List of tables */
 | 
						|
  ExprList *pEList    /* Expressions defining the result set */
 | 
						|
){
 | 
						|
  Vdbe *v = pParse->pVdbe;
 | 
						|
  int i, j;
 | 
						|
  for(i=0; i<pEList->nExpr; i++){
 | 
						|
    Expr *p = pEList->a[i].pExpr;
 | 
						|
    char *zType = 0;
 | 
						|
    if( p==0 ) continue;
 | 
						|
    if( p->op==TK_COLUMN && pTabList ){
 | 
						|
      Table *pTab;
 | 
						|
      int iCol = p->iColumn;
 | 
						|
      for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
 | 
						|
      assert( j<pTabList->nSrc );
 | 
						|
      pTab = pTabList->a[j].pTab;
 | 
						|
      if( iCol<0 ) iCol = pTab->iPKey;
 | 
						|
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | 
						|
      if( iCol<0 ){
 | 
						|
        zType = "INTEGER";
 | 
						|
      }else{
 | 
						|
        zType = pTab->aCol[iCol].zType;
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      if( sqliteExprType(p)==SQLITE_SO_TEXT ){
 | 
						|
        zType = "TEXT";
 | 
						|
      }else{
 | 
						|
        zType = "NUMERIC";
 | 
						|
      }
 | 
						|
    }
 | 
						|
    sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code that will tell the VDBE the names of columns
 | 
						|
** in the result set.  This information is used to provide the
 | 
						|
** azCol[] values in the callback.
 | 
						|
*/
 | 
						|
static void generateColumnNames(
 | 
						|
  Parse *pParse,      /* Parser context */
 | 
						|
  SrcList *pTabList,  /* List of tables */
 | 
						|
  ExprList *pEList    /* Expressions defining the result set */
 | 
						|
){
 | 
						|
  Vdbe *v = pParse->pVdbe;
 | 
						|
  int i, j;
 | 
						|
  sqlite *db = pParse->db;
 | 
						|
  int fullNames, shortNames;
 | 
						|
 | 
						|
  assert( v!=0 );
 | 
						|
  if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
 | 
						|
  pParse->colNamesSet = 1;
 | 
						|
  fullNames = (db->flags & SQLITE_FullColNames)!=0;
 | 
						|
  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
 | 
						|
  for(i=0; i<pEList->nExpr; i++){
 | 
						|
    Expr *p;
 | 
						|
    int p2 = i==pEList->nExpr-1;
 | 
						|
    p = pEList->a[i].pExpr;
 | 
						|
    if( p==0 ) continue;
 | 
						|
    if( pEList->a[i].zName ){
 | 
						|
      char *zName = pEList->a[i].zName;
 | 
						|
      sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if( p->op==TK_COLUMN && pTabList ){
 | 
						|
      Table *pTab;
 | 
						|
      char *zCol;
 | 
						|
      int iCol = p->iColumn;
 | 
						|
      for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
 | 
						|
      assert( j<pTabList->nSrc );
 | 
						|
      pTab = pTabList->a[j].pTab;
 | 
						|
      if( iCol<0 ) iCol = pTab->iPKey;
 | 
						|
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | 
						|
      if( iCol<0 ){
 | 
						|
        zCol = "_ROWID_";
 | 
						|
      }else{
 | 
						|
        zCol = pTab->aCol[iCol].zName;
 | 
						|
      }
 | 
						|
      if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
 | 
						|
        int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
 | 
						|
        sqliteVdbeCompressSpace(v, addr);
 | 
						|
      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
 | 
						|
        char *zName = 0;
 | 
						|
        char *zTab;
 | 
						|
 
 | 
						|
        zTab = pTabList->a[j].zAlias;
 | 
						|
        if( fullNames || zTab==0 ) zTab = pTab->zName;
 | 
						|
        sqliteSetString(&zName, zTab, ".", zCol, 0);
 | 
						|
        sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
 | 
						|
      }
 | 
						|
    }else if( p->span.z && p->span.z[0] ){
 | 
						|
      int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
 | 
						|
      sqliteVdbeCompressSpace(v, addr);
 | 
						|
    }else{
 | 
						|
      char zName[30];
 | 
						|
      assert( p->op!=TK_COLUMN || pTabList==0 );
 | 
						|
      sprintf(zName, "column%d", i+1);
 | 
						|
      sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Name of the connection operator, used for error messages.
 | 
						|
*/
 | 
						|
static const char *selectOpName(int id){
 | 
						|
  char *z;
 | 
						|
  switch( id ){
 | 
						|
    case TK_ALL:       z = "UNION ALL";   break;
 | 
						|
    case TK_INTERSECT: z = "INTERSECT";   break;
 | 
						|
    case TK_EXCEPT:    z = "EXCEPT";      break;
 | 
						|
    default:           z = "UNION";       break;
 | 
						|
  }
 | 
						|
  return z;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Forward declaration
 | 
						|
*/
 | 
						|
static int fillInColumnList(Parse*, Select*);
 | 
						|
 | 
						|
/*
 | 
						|
** Given a SELECT statement, generate a Table structure that describes
 | 
						|
** the result set of that SELECT.
 | 
						|
*/
 | 
						|
Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
 | 
						|
  Table *pTab;
 | 
						|
  int i, j;
 | 
						|
  ExprList *pEList;
 | 
						|
  Column *aCol;
 | 
						|
 | 
						|
  if( fillInColumnList(pParse, pSelect) ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pTab = sqliteMalloc( sizeof(Table) );
 | 
						|
  if( pTab==0 ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
 | 
						|
  pEList = pSelect->pEList;
 | 
						|
  pTab->nCol = pEList->nExpr;
 | 
						|
  assert( pTab->nCol>0 );
 | 
						|
  pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
 | 
						|
  for(i=0; i<pTab->nCol; i++){
 | 
						|
    Expr *p, *pR;
 | 
						|
    if( pEList->a[i].zName ){
 | 
						|
      aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
 | 
						|
    }else if( (p=pEList->a[i].pExpr)->op==TK_DOT 
 | 
						|
               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
 | 
						|
      int cnt;
 | 
						|
      sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
 | 
						|
      for(j=cnt=0; j<i; j++){
 | 
						|
        if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){
 | 
						|
          int n;
 | 
						|
          char zBuf[30];
 | 
						|
          sprintf(zBuf,"_%d",++cnt);
 | 
						|
          n = strlen(zBuf);
 | 
						|
          sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0);
 | 
						|
          j = -1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }else if( p->span.z && p->span.z[0] ){
 | 
						|
      sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
 | 
						|
    }else{
 | 
						|
      char zBuf[30];
 | 
						|
      sprintf(zBuf, "column%d", i+1);
 | 
						|
      pTab->aCol[i].zName = sqliteStrDup(zBuf);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pTab->iPKey = -1;
 | 
						|
  return pTab;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** For the given SELECT statement, do three things.
 | 
						|
**
 | 
						|
**    (1)  Fill in the pTabList->a[].pTab fields in the SrcList that 
 | 
						|
**         defines the set of tables that should be scanned.  For views,
 | 
						|
**         fill pTabList->a[].pSelect with a copy of the SELECT statement
 | 
						|
**         that implements the view.  A copy is made of the view's SELECT
 | 
						|
**         statement so that we can freely modify or delete that statement
 | 
						|
**         without worrying about messing up the presistent representation
 | 
						|
**         of the view.
 | 
						|
**
 | 
						|
**    (2)  Add terms to the WHERE clause to accomodate the NATURAL keyword
 | 
						|
**         on joins and the ON and USING clause of joins.
 | 
						|
**
 | 
						|
**    (3)  Scan the list of columns in the result set (pEList) looking
 | 
						|
**         for instances of the "*" operator or the TABLE.* operator.
 | 
						|
**         If found, expand each "*" to be every column in every table
 | 
						|
**         and TABLE.* to be every column in TABLE.
 | 
						|
**
 | 
						|
** Return 0 on success.  If there are problems, leave an error message
 | 
						|
** in pParse and return non-zero.
 | 
						|
*/
 | 
						|
static int fillInColumnList(Parse *pParse, Select *p){
 | 
						|
  int i, j, k, rc;
 | 
						|
  SrcList *pTabList;
 | 
						|
  ExprList *pEList;
 | 
						|
  Table *pTab;
 | 
						|
 | 
						|
  if( p==0 || p->pSrc==0 ) return 1;
 | 
						|
  pTabList = p->pSrc;
 | 
						|
  pEList = p->pEList;
 | 
						|
 | 
						|
  /* Look up every table in the table list.
 | 
						|
  */
 | 
						|
  for(i=0; i<pTabList->nSrc; i++){
 | 
						|
    if( pTabList->a[i].pTab ){
 | 
						|
      /* This routine has run before!  No need to continue */
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    if( pTabList->a[i].zName==0 ){
 | 
						|
      /* A sub-query in the FROM clause of a SELECT */
 | 
						|
      assert( pTabList->a[i].pSelect!=0 );
 | 
						|
      if( pTabList->a[i].zAlias==0 ){
 | 
						|
        char zFakeName[60];
 | 
						|
        sprintf(zFakeName, "sqlite_subquery_%p_",
 | 
						|
           (void*)pTabList->a[i].pSelect);
 | 
						|
        sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
 | 
						|
      }
 | 
						|
      pTabList->a[i].pTab = pTab = 
 | 
						|
        sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
 | 
						|
                                        pTabList->a[i].pSelect);
 | 
						|
      if( pTab==0 ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      /* The isTransient flag indicates that the Table structure has been
 | 
						|
      ** dynamically allocated and may be freed at any time.  In other words,
 | 
						|
      ** pTab is not pointing to a persistent table structure that defines
 | 
						|
      ** part of the schema. */
 | 
						|
      pTab->isTransient = 1;
 | 
						|
    }else{
 | 
						|
      /* An ordinary table or view name in the FROM clause */
 | 
						|
      pTabList->a[i].pTab = pTab = 
 | 
						|
        sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
 | 
						|
      if( pTab==0 ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      if( pTab->pSelect ){
 | 
						|
        /* We reach here if the named table is a really a view */
 | 
						|
        if( sqliteViewGetColumnNames(pParse, pTab) ){
 | 
						|
          return 1;
 | 
						|
        }
 | 
						|
        /* If pTabList->a[i].pSelect!=0 it means we are dealing with a
 | 
						|
        ** view within a view.  The SELECT structure has already been
 | 
						|
        ** copied by the outer view so we can skip the copy step here
 | 
						|
        ** in the inner view.
 | 
						|
        */
 | 
						|
        if( pTabList->a[i].pSelect==0 ){
 | 
						|
          pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Process NATURAL keywords, and ON and USING clauses of joins.
 | 
						|
  */
 | 
						|
  if( sqliteProcessJoin(pParse, p) ) return 1;
 | 
						|
 | 
						|
  /* For every "*" that occurs in the column list, insert the names of
 | 
						|
  ** all columns in all tables.  And for every TABLE.* insert the names
 | 
						|
  ** of all columns in TABLE.  The parser inserted a special expression
 | 
						|
  ** with the TK_ALL operator for each "*" that it found in the column list.
 | 
						|
  ** The following code just has to locate the TK_ALL expressions and expand
 | 
						|
  ** each one to the list of all columns in all tables.
 | 
						|
  **
 | 
						|
  ** The first loop just checks to see if there are any "*" operators
 | 
						|
  ** that need expanding.
 | 
						|
  */
 | 
						|
  for(k=0; k<pEList->nExpr; k++){
 | 
						|
    Expr *pE = pEList->a[k].pExpr;
 | 
						|
    if( pE->op==TK_ALL ) break;
 | 
						|
    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
 | 
						|
         && pE->pLeft && pE->pLeft->op==TK_ID ) break;
 | 
						|
  }
 | 
						|
  rc = 0;
 | 
						|
  if( k<pEList->nExpr ){
 | 
						|
    /*
 | 
						|
    ** If we get here it means the result set contains one or more "*"
 | 
						|
    ** operators that need to be expanded.  Loop through each expression
 | 
						|
    ** in the result set and expand them one by one.
 | 
						|
    */
 | 
						|
    struct ExprList_item *a = pEList->a;
 | 
						|
    ExprList *pNew = 0;
 | 
						|
    for(k=0; k<pEList->nExpr; k++){
 | 
						|
      Expr *pE = a[k].pExpr;
 | 
						|
      if( pE->op!=TK_ALL &&
 | 
						|
           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
 | 
						|
        /* This particular expression does not need to be expanded.
 | 
						|
        */
 | 
						|
        pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
 | 
						|
        pNew->a[pNew->nExpr-1].zName = a[k].zName;
 | 
						|
        a[k].pExpr = 0;
 | 
						|
        a[k].zName = 0;
 | 
						|
      }else{
 | 
						|
        /* This expression is a "*" or a "TABLE.*" and needs to be
 | 
						|
        ** expanded. */
 | 
						|
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
 | 
						|
        Token *pName;           /* text of name of TABLE */
 | 
						|
        if( pE->op==TK_DOT && pE->pLeft ){
 | 
						|
          pName = &pE->pLeft->token;
 | 
						|
        }else{
 | 
						|
          pName = 0;
 | 
						|
        }
 | 
						|
        for(i=0; i<pTabList->nSrc; i++){
 | 
						|
          Table *pTab = pTabList->a[i].pTab;
 | 
						|
          char *zTabName = pTabList->a[i].zAlias;
 | 
						|
          if( zTabName==0 || zTabName[0]==0 ){ 
 | 
						|
            zTabName = pTab->zName;
 | 
						|
          }
 | 
						|
          if( pName && (zTabName==0 || zTabName[0]==0 || 
 | 
						|
                 sqliteStrNICmp(pName->z, zTabName, pName->n)!=0 ||
 | 
						|
                 zTabName[pName->n]!=0) ){
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          tableSeen = 1;
 | 
						|
          for(j=0; j<pTab->nCol; j++){
 | 
						|
            Expr *pExpr, *pLeft, *pRight;
 | 
						|
            char *zName = pTab->aCol[j].zName;
 | 
						|
 | 
						|
            if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
 | 
						|
                columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
 | 
						|
              /* In a NATURAL join, omit the join columns from the 
 | 
						|
              ** table on the right */
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
            if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
 | 
						|
              /* In a join with a USING clause, omit columns in the
 | 
						|
              ** using clause from the table on the right. */
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
            pRight = sqliteExpr(TK_ID, 0, 0, 0);
 | 
						|
            if( pRight==0 ) break;
 | 
						|
            pRight->token.z = zName;
 | 
						|
            pRight->token.n = strlen(zName);
 | 
						|
            pRight->token.dyn = 0;
 | 
						|
            if( zTabName && pTabList->nSrc>1 ){
 | 
						|
              pLeft = sqliteExpr(TK_ID, 0, 0, 0);
 | 
						|
              pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
 | 
						|
              if( pExpr==0 ) break;
 | 
						|
              pLeft->token.z = zTabName;
 | 
						|
              pLeft->token.n = strlen(zTabName);
 | 
						|
              pLeft->token.dyn = 0;
 | 
						|
              sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
 | 
						|
              pExpr->span.n = strlen(pExpr->span.z);
 | 
						|
              pExpr->span.dyn = 1;
 | 
						|
              pExpr->token.z = 0;
 | 
						|
              pExpr->token.n = 0;
 | 
						|
              pExpr->token.dyn = 0;
 | 
						|
            }else{
 | 
						|
              pExpr = pRight;
 | 
						|
              pExpr->span = pExpr->token;
 | 
						|
            }
 | 
						|
            pNew = sqliteExprListAppend(pNew, pExpr, 0);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if( !tableSeen ){
 | 
						|
          if( pName ){
 | 
						|
            sqliteErrorMsg(pParse, "no such table: %T", pName);
 | 
						|
          }else{
 | 
						|
            sqliteErrorMsg(pParse, "no tables specified");
 | 
						|
          }
 | 
						|
          rc = 1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    sqliteExprListDelete(pEList);
 | 
						|
    p->pEList = pNew;
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
 | 
						|
** in a select structure.  It just sets the pointers to NULL.  This
 | 
						|
** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
 | 
						|
** pointer is not NULL, this routine is called recursively on that pointer.
 | 
						|
**
 | 
						|
** This routine is called on the Select structure that defines a
 | 
						|
** VIEW in order to undo any bindings to tables.  This is necessary
 | 
						|
** because those tables might be DROPed by a subsequent SQL command.
 | 
						|
** If the bindings are not removed, then the Select.pSrc->a[].pTab field
 | 
						|
** will be left pointing to a deallocated Table structure after the
 | 
						|
** DROP and a coredump will occur the next time the VIEW is used.
 | 
						|
*/
 | 
						|
void sqliteSelectUnbind(Select *p){
 | 
						|
  int i;
 | 
						|
  SrcList *pSrc = p->pSrc;
 | 
						|
  Table *pTab;
 | 
						|
  if( p==0 ) return;
 | 
						|
  for(i=0; i<pSrc->nSrc; i++){
 | 
						|
    if( (pTab = pSrc->a[i].pTab)!=0 ){
 | 
						|
      if( pTab->isTransient ){
 | 
						|
        sqliteDeleteTable(0, pTab);
 | 
						|
      }
 | 
						|
      pSrc->a[i].pTab = 0;
 | 
						|
      if( pSrc->a[i].pSelect ){
 | 
						|
        sqliteSelectUnbind(pSrc->a[i].pSelect);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine associates entries in an ORDER BY expression list with
 | 
						|
** columns in a result.  For each ORDER BY expression, the opcode of
 | 
						|
** the top-level node is changed to TK_COLUMN and the iColumn value of
 | 
						|
** the top-level node is filled in with column number and the iTable
 | 
						|
** value of the top-level node is filled with iTable parameter.
 | 
						|
**
 | 
						|
** If there are prior SELECT clauses, they are processed first.  A match
 | 
						|
** in an earlier SELECT takes precedence over a later SELECT.
 | 
						|
**
 | 
						|
** Any entry that does not match is flagged as an error.  The number
 | 
						|
** of errors is returned.
 | 
						|
**
 | 
						|
** This routine does NOT correctly initialize the Expr.dataType  field
 | 
						|
** of the ORDER BY expressions.  The multiSelectSortOrder() routine
 | 
						|
** must be called to do that after the individual select statements
 | 
						|
** have all been analyzed.  This routine is unable to compute Expr.dataType
 | 
						|
** because it must be called before the individual select statements
 | 
						|
** have been analyzed.
 | 
						|
*/
 | 
						|
static int matchOrderbyToColumn(
 | 
						|
  Parse *pParse,          /* A place to leave error messages */
 | 
						|
  Select *pSelect,        /* Match to result columns of this SELECT */
 | 
						|
  ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
 | 
						|
  int iTable,             /* Insert this value in iTable */
 | 
						|
  int mustComplete        /* If TRUE all ORDER BYs must match */
 | 
						|
){
 | 
						|
  int nErr = 0;
 | 
						|
  int i, j;
 | 
						|
  ExprList *pEList;
 | 
						|
 | 
						|
  if( pSelect==0 || pOrderBy==0 ) return 1;
 | 
						|
  if( mustComplete ){
 | 
						|
    for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
 | 
						|
  }
 | 
						|
  if( fillInColumnList(pParse, pSelect) ){
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  if( pSelect->pPrior ){
 | 
						|
    if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pEList = pSelect->pEList;
 | 
						|
  for(i=0; i<pOrderBy->nExpr; i++){
 | 
						|
    Expr *pE = pOrderBy->a[i].pExpr;
 | 
						|
    int iCol = -1;
 | 
						|
    if( pOrderBy->a[i].done ) continue;
 | 
						|
    if( sqliteExprIsInteger(pE, &iCol) ){
 | 
						|
      if( iCol<=0 || iCol>pEList->nExpr ){
 | 
						|
        sqliteErrorMsg(pParse,
 | 
						|
          "ORDER BY position %d should be between 1 and %d",
 | 
						|
          iCol, pEList->nExpr);
 | 
						|
        nErr++;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if( !mustComplete ) continue;
 | 
						|
      iCol--;
 | 
						|
    }
 | 
						|
    for(j=0; iCol<0 && j<pEList->nExpr; j++){
 | 
						|
      if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
 | 
						|
        char *zName, *zLabel;
 | 
						|
        zName = pEList->a[j].zName;
 | 
						|
        assert( pE->token.z );
 | 
						|
        zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
 | 
						|
        sqliteDequote(zLabel);
 | 
						|
        if( sqliteStrICmp(zName, zLabel)==0 ){ 
 | 
						|
          iCol = j;
 | 
						|
        }
 | 
						|
        sqliteFree(zLabel);
 | 
						|
      }
 | 
						|
      if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
 | 
						|
        iCol = j;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( iCol>=0 ){
 | 
						|
      pE->op = TK_COLUMN;
 | 
						|
      pE->iColumn = iCol;
 | 
						|
      pE->iTable = iTable;
 | 
						|
      pOrderBy->a[i].done = 1;
 | 
						|
    }
 | 
						|
    if( iCol<0 && mustComplete ){
 | 
						|
      sqliteErrorMsg(pParse,
 | 
						|
        "ORDER BY term number %d does not match any result column", i+1);
 | 
						|
      nErr++;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nErr;  
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Get a VDBE for the given parser context.  Create a new one if necessary.
 | 
						|
** If an error occurs, return NULL and leave a message in pParse.
 | 
						|
*/
 | 
						|
Vdbe *sqliteGetVdbe(Parse *pParse){
 | 
						|
  Vdbe *v = pParse->pVdbe;
 | 
						|
  if( v==0 ){
 | 
						|
    v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
 | 
						|
  }
 | 
						|
  return v;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine sets the Expr.dataType field on all elements of
 | 
						|
** the pOrderBy expression list.  The pOrderBy list will have been
 | 
						|
** set up by matchOrderbyToColumn().  Hence each expression has
 | 
						|
** a TK_COLUMN as its root node.  The Expr.iColumn refers to a 
 | 
						|
** column in the result set.   The datatype is set to SQLITE_SO_TEXT
 | 
						|
** if the corresponding column in p and every SELECT to the left of
 | 
						|
** p has a datatype of SQLITE_SO_TEXT.  If the cooressponding column
 | 
						|
** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype
 | 
						|
** of the order-by expression is set to SQLITE_SO_NUM.
 | 
						|
**
 | 
						|
** Examples:
 | 
						|
**
 | 
						|
**     CREATE TABLE one(a INTEGER, b TEXT);
 | 
						|
**     CREATE TABLE two(c VARCHAR(5), d FLOAT);
 | 
						|
**
 | 
						|
**     SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
 | 
						|
**
 | 
						|
** The primary sort key will use SQLITE_SO_NUM because the "d" in
 | 
						|
** the second SELECT is numeric.  The 1st column of the first SELECT
 | 
						|
** is text but that does not matter because a numeric always overrides
 | 
						|
** a text.
 | 
						|
**
 | 
						|
** The secondary key will use the SQLITE_SO_TEXT sort order because
 | 
						|
** both the (second) "b" in the first SELECT and the "c" in the second
 | 
						|
** SELECT have a datatype of text.
 | 
						|
*/ 
 | 
						|
static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
 | 
						|
  int i;
 | 
						|
  ExprList *pEList;
 | 
						|
  if( pOrderBy==0 ) return;
 | 
						|
  if( p==0 ){
 | 
						|
    for(i=0; i<pOrderBy->nExpr; i++){
 | 
						|
      pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  multiSelectSortOrder(p->pPrior, pOrderBy);
 | 
						|
  pEList = p->pEList;
 | 
						|
  for(i=0; i<pOrderBy->nExpr; i++){
 | 
						|
    Expr *pE = pOrderBy->a[i].pExpr;
 | 
						|
    if( pE->dataType==SQLITE_SO_NUM ) continue;
 | 
						|
    assert( pE->iColumn>=0 );
 | 
						|
    if( pEList->nExpr>pE->iColumn ){
 | 
						|
      pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Compute the iLimit and iOffset fields of the SELECT based on the
 | 
						|
** nLimit and nOffset fields.  nLimit and nOffset hold the integers
 | 
						|
** that appear in the original SQL statement after the LIMIT and OFFSET
 | 
						|
** keywords.  Or that hold -1 and 0 if those keywords are omitted.
 | 
						|
** iLimit and iOffset are the integer memory register numbers for
 | 
						|
** counters used to compute the limit and offset.  If there is no
 | 
						|
** limit and/or offset, then iLimit and iOffset are negative.
 | 
						|
**
 | 
						|
** This routine changes the values if iLimit and iOffset only if
 | 
						|
** a limit or offset is defined by nLimit and nOffset.  iLimit and
 | 
						|
** iOffset should have been preset to appropriate default values
 | 
						|
** (usually but not always -1) prior to calling this routine.
 | 
						|
** Only if nLimit>=0 or nOffset>0 do the limit registers get
 | 
						|
** redefined.  The UNION ALL operator uses this property to force
 | 
						|
** the reuse of the same limit and offset registers across multiple
 | 
						|
** SELECT statements.
 | 
						|
*/
 | 
						|
static void computeLimitRegisters(Parse *pParse, Select *p){
 | 
						|
  /* 
 | 
						|
  ** If the comparison is p->nLimit>0 then "LIMIT 0" shows
 | 
						|
  ** all rows.  It is the same as no limit. If the comparision is
 | 
						|
  ** p->nLimit>=0 then "LIMIT 0" show no rows at all.
 | 
						|
  ** "LIMIT -1" always shows all rows.  There is some
 | 
						|
  ** contraversy about what the correct behavior should be.
 | 
						|
  ** The current implementation interprets "LIMIT 0" to mean
 | 
						|
  ** no rows.
 | 
						|
  */
 | 
						|
  if( p->nLimit>=0 ){
 | 
						|
    int iMem = pParse->nMem++;
 | 
						|
    Vdbe *v = sqliteGetVdbe(pParse);
 | 
						|
    if( v==0 ) return;
 | 
						|
    sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
 | 
						|
    p->iLimit = iMem;
 | 
						|
  }
 | 
						|
  if( p->nOffset>0 ){
 | 
						|
    int iMem = pParse->nMem++;
 | 
						|
    Vdbe *v = sqliteGetVdbe(pParse);
 | 
						|
    if( v==0 ) return;
 | 
						|
    sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
 | 
						|
    p->iOffset = iMem;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called to process a query that is really the union
 | 
						|
** or intersection of two or more separate queries.
 | 
						|
**
 | 
						|
** "p" points to the right-most of the two queries.  the query on the
 | 
						|
** left is p->pPrior.  The left query could also be a compound query
 | 
						|
** in which case this routine will be called recursively. 
 | 
						|
**
 | 
						|
** The results of the total query are to be written into a destination
 | 
						|
** of type eDest with parameter iParm.
 | 
						|
**
 | 
						|
** Example 1:  Consider a three-way compound SQL statement.
 | 
						|
**
 | 
						|
**     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
 | 
						|
**
 | 
						|
** This statement is parsed up as follows:
 | 
						|
**
 | 
						|
**     SELECT c FROM t3
 | 
						|
**      |
 | 
						|
**      `----->  SELECT b FROM t2
 | 
						|
**                |
 | 
						|
**                `------>  SELECT a FROM t1
 | 
						|
**
 | 
						|
** The arrows in the diagram above represent the Select.pPrior pointer.
 | 
						|
** So if this routine is called with p equal to the t3 query, then
 | 
						|
** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
 | 
						|
**
 | 
						|
** Notice that because of the way SQLite parses compound SELECTs, the
 | 
						|
** individual selects always group from left to right.
 | 
						|
*/
 | 
						|
static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
 | 
						|
  int rc;             /* Success code from a subroutine */
 | 
						|
  Select *pPrior;     /* Another SELECT immediately to our left */
 | 
						|
  Vdbe *v;            /* Generate code to this VDBE */
 | 
						|
 | 
						|
  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
 | 
						|
  ** the last SELECT in the series may have an ORDER BY or LIMIT.
 | 
						|
  */
 | 
						|
  if( p==0 || p->pPrior==0 ) return 1;
 | 
						|
  pPrior = p->pPrior;
 | 
						|
  if( pPrior->pOrderBy ){
 | 
						|
    sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
 | 
						|
      selectOpName(p->op));
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
 | 
						|
    sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
 | 
						|
      selectOpName(p->op));
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Make sure we have a valid query engine.  If not, create a new one.
 | 
						|
  */
 | 
						|
  v = sqliteGetVdbe(pParse);
 | 
						|
  if( v==0 ) return 1;
 | 
						|
 | 
						|
  /* Create the destination temporary table if necessary
 | 
						|
  */
 | 
						|
  if( eDest==SRT_TempTable ){
 | 
						|
    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
 | 
						|
    eDest = SRT_Table;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Generate code for the left and right SELECT statements.
 | 
						|
  */
 | 
						|
  switch( p->op ){
 | 
						|
    case TK_ALL: {
 | 
						|
      if( p->pOrderBy==0 ){
 | 
						|
        pPrior->nLimit = p->nLimit;
 | 
						|
        pPrior->nOffset = p->nOffset;
 | 
						|
        rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
 | 
						|
        if( rc ) return rc;
 | 
						|
        p->pPrior = 0;
 | 
						|
        p->iLimit = pPrior->iLimit;
 | 
						|
        p->iOffset = pPrior->iOffset;
 | 
						|
        p->nLimit = -1;
 | 
						|
        p->nOffset = 0;
 | 
						|
        rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
 | 
						|
        p->pPrior = pPrior;
 | 
						|
        if( rc ) return rc;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      /* For UNION ALL ... ORDER BY fall through to the next case */
 | 
						|
    }
 | 
						|
    case TK_EXCEPT:
 | 
						|
    case TK_UNION: {
 | 
						|
      int unionTab;    /* Cursor number of the temporary table holding result */
 | 
						|
      int op;          /* One of the SRT_ operations to apply to self */
 | 
						|
      int priorOp;     /* The SRT_ operation to apply to prior selects */
 | 
						|
      int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
 | 
						|
      ExprList *pOrderBy;  /* The ORDER BY clause for the right SELECT */
 | 
						|
 | 
						|
      priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
 | 
						|
      if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
 | 
						|
        /* We can reuse a temporary table generated by a SELECT to our
 | 
						|
        ** right.
 | 
						|
        */
 | 
						|
        unionTab = iParm;
 | 
						|
      }else{
 | 
						|
        /* We will need to create our own temporary table to hold the
 | 
						|
        ** intermediate results.
 | 
						|
        */
 | 
						|
        unionTab = pParse->nTab++;
 | 
						|
        if( p->pOrderBy 
 | 
						|
        && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
 | 
						|
          return 1;
 | 
						|
        }
 | 
						|
        if( p->op!=TK_ALL ){
 | 
						|
          sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
 | 
						|
          sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
 | 
						|
        }else{
 | 
						|
          sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* Code the SELECT statements to our left
 | 
						|
      */
 | 
						|
      rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
 | 
						|
      if( rc ) return rc;
 | 
						|
 | 
						|
      /* Code the current SELECT statement
 | 
						|
      */
 | 
						|
      switch( p->op ){
 | 
						|
         case TK_EXCEPT:  op = SRT_Except;   break;
 | 
						|
         case TK_UNION:   op = SRT_Union;    break;
 | 
						|
         case TK_ALL:     op = SRT_Table;    break;
 | 
						|
      }
 | 
						|
      p->pPrior = 0;
 | 
						|
      pOrderBy = p->pOrderBy;
 | 
						|
      p->pOrderBy = 0;
 | 
						|
      nLimit = p->nLimit;
 | 
						|
      p->nLimit = -1;
 | 
						|
      nOffset = p->nOffset;
 | 
						|
      p->nOffset = 0;
 | 
						|
      rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
 | 
						|
      p->pPrior = pPrior;
 | 
						|
      p->pOrderBy = pOrderBy;
 | 
						|
      p->nLimit = nLimit;
 | 
						|
      p->nOffset = nOffset;
 | 
						|
      if( rc ) return rc;
 | 
						|
 | 
						|
      /* Convert the data in the temporary table into whatever form
 | 
						|
      ** it is that we currently need.
 | 
						|
      */      
 | 
						|
      if( eDest!=priorOp || unionTab!=iParm ){
 | 
						|
        int iCont, iBreak, iStart;
 | 
						|
        assert( p->pEList );
 | 
						|
        if( eDest==SRT_Callback ){
 | 
						|
          generateColumnNames(pParse, 0, p->pEList);
 | 
						|
          generateColumnTypes(pParse, p->pSrc, p->pEList);
 | 
						|
        }
 | 
						|
        iBreak = sqliteVdbeMakeLabel(v);
 | 
						|
        iCont = sqliteVdbeMakeLabel(v);
 | 
						|
        sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
 | 
						|
        computeLimitRegisters(pParse, p);
 | 
						|
        iStart = sqliteVdbeCurrentAddr(v);
 | 
						|
        multiSelectSortOrder(p, p->pOrderBy);
 | 
						|
        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
 | 
						|
                             p->pOrderBy, -1, eDest, iParm, 
 | 
						|
                             iCont, iBreak);
 | 
						|
        if( rc ) return 1;
 | 
						|
        sqliteVdbeResolveLabel(v, iCont);
 | 
						|
        sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
 | 
						|
        sqliteVdbeResolveLabel(v, iBreak);
 | 
						|
        sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
 | 
						|
        if( p->pOrderBy ){
 | 
						|
          generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_INTERSECT: {
 | 
						|
      int tab1, tab2;
 | 
						|
      int iCont, iBreak, iStart;
 | 
						|
      int nLimit, nOffset;
 | 
						|
 | 
						|
      /* INTERSECT is different from the others since it requires
 | 
						|
      ** two temporary tables.  Hence it has its own case.  Begin
 | 
						|
      ** by allocating the tables we will need.
 | 
						|
      */
 | 
						|
      tab1 = pParse->nTab++;
 | 
						|
      tab2 = pParse->nTab++;
 | 
						|
      if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
 | 
						|
      sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
 | 
						|
 | 
						|
      /* Code the SELECTs to our left into temporary table "tab1".
 | 
						|
      */
 | 
						|
      rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
 | 
						|
      if( rc ) return rc;
 | 
						|
 | 
						|
      /* Code the current SELECT into temporary table "tab2"
 | 
						|
      */
 | 
						|
      sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
 | 
						|
      sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
 | 
						|
      p->pPrior = 0;
 | 
						|
      nLimit = p->nLimit;
 | 
						|
      p->nLimit = -1;
 | 
						|
      nOffset = p->nOffset;
 | 
						|
      p->nOffset = 0;
 | 
						|
      rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
 | 
						|
      p->pPrior = pPrior;
 | 
						|
      p->nLimit = nLimit;
 | 
						|
      p->nOffset = nOffset;
 | 
						|
      if( rc ) return rc;
 | 
						|
 | 
						|
      /* Generate code to take the intersection of the two temporary
 | 
						|
      ** tables.
 | 
						|
      */
 | 
						|
      assert( p->pEList );
 | 
						|
      if( eDest==SRT_Callback ){
 | 
						|
        generateColumnNames(pParse, 0, p->pEList);
 | 
						|
        generateColumnTypes(pParse, p->pSrc, p->pEList);
 | 
						|
      }
 | 
						|
      iBreak = sqliteVdbeMakeLabel(v);
 | 
						|
      iCont = sqliteVdbeMakeLabel(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
 | 
						|
      computeLimitRegisters(pParse, p);
 | 
						|
      iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
 | 
						|
      multiSelectSortOrder(p, p->pOrderBy);
 | 
						|
      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
 | 
						|
                             p->pOrderBy, -1, eDest, iParm, 
 | 
						|
                             iCont, iBreak);
 | 
						|
      if( rc ) return 1;
 | 
						|
      sqliteVdbeResolveLabel(v, iCont);
 | 
						|
      sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
 | 
						|
      sqliteVdbeResolveLabel(v, iBreak);
 | 
						|
      sqliteVdbeAddOp(v, OP_Close, tab2, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Close, tab1, 0);
 | 
						|
      if( p->pOrderBy ){
 | 
						|
        generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert( p->pEList && pPrior->pEList );
 | 
						|
  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
 | 
						|
    sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
 | 
						|
      " do not have the same number of result columns", selectOpName(p->op));
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Scan through the expression pExpr.  Replace every reference to
 | 
						|
** a column in table number iTable with a copy of the iColumn-th
 | 
						|
** entry in pEList.  (But leave references to the ROWID column 
 | 
						|
** unchanged.)
 | 
						|
**
 | 
						|
** This routine is part of the flattening procedure.  A subquery
 | 
						|
** whose result set is defined by pEList appears as entry in the
 | 
						|
** FROM clause of a SELECT such that the VDBE cursor assigned to that
 | 
						|
** FORM clause entry is iTable.  This routine make the necessary 
 | 
						|
** changes to pExpr so that it refers directly to the source table
 | 
						|
** of the subquery rather the result set of the subquery.
 | 
						|
*/
 | 
						|
static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
 | 
						|
static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
 | 
						|
  if( pExpr==0 ) return;
 | 
						|
  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
 | 
						|
    if( pExpr->iColumn<0 ){
 | 
						|
      pExpr->op = TK_NULL;
 | 
						|
    }else{
 | 
						|
      Expr *pNew;
 | 
						|
      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
 | 
						|
      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
 | 
						|
      pNew = pEList->a[pExpr->iColumn].pExpr;
 | 
						|
      assert( pNew!=0 );
 | 
						|
      pExpr->op = pNew->op;
 | 
						|
      pExpr->dataType = pNew->dataType;
 | 
						|
      assert( pExpr->pLeft==0 );
 | 
						|
      pExpr->pLeft = sqliteExprDup(pNew->pLeft);
 | 
						|
      assert( pExpr->pRight==0 );
 | 
						|
      pExpr->pRight = sqliteExprDup(pNew->pRight);
 | 
						|
      assert( pExpr->pList==0 );
 | 
						|
      pExpr->pList = sqliteExprListDup(pNew->pList);
 | 
						|
      pExpr->iTable = pNew->iTable;
 | 
						|
      pExpr->iColumn = pNew->iColumn;
 | 
						|
      pExpr->iAgg = pNew->iAgg;
 | 
						|
      sqliteTokenCopy(&pExpr->token, &pNew->token);
 | 
						|
      sqliteTokenCopy(&pExpr->span, &pNew->span);
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    substExpr(pExpr->pLeft, iTable, pEList);
 | 
						|
    substExpr(pExpr->pRight, iTable, pEList);
 | 
						|
    substExprList(pExpr->pList, iTable, pEList);
 | 
						|
  }
 | 
						|
}
 | 
						|
static void 
 | 
						|
substExprList(ExprList *pList, int iTable, ExprList *pEList){
 | 
						|
  int i;
 | 
						|
  if( pList==0 ) return;
 | 
						|
  for(i=0; i<pList->nExpr; i++){
 | 
						|
    substExpr(pList->a[i].pExpr, iTable, pEList);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine attempts to flatten subqueries in order to speed
 | 
						|
** execution.  It returns 1 if it makes changes and 0 if no flattening
 | 
						|
** occurs.
 | 
						|
**
 | 
						|
** To understand the concept of flattening, consider the following
 | 
						|
** query:
 | 
						|
**
 | 
						|
**     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
 | 
						|
**
 | 
						|
** The default way of implementing this query is to execute the
 | 
						|
** subquery first and store the results in a temporary table, then
 | 
						|
** run the outer query on that temporary table.  This requires two
 | 
						|
** passes over the data.  Furthermore, because the temporary table
 | 
						|
** has no indices, the WHERE clause on the outer query cannot be
 | 
						|
** optimized.
 | 
						|
**
 | 
						|
** This routine attempts to rewrite queries such as the above into
 | 
						|
** a single flat select, like this:
 | 
						|
**
 | 
						|
**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
 | 
						|
**
 | 
						|
** The code generated for this simpification gives the same result
 | 
						|
** but only has to scan the data once.  And because indices might 
 | 
						|
** exist on the table t1, a complete scan of the data might be
 | 
						|
** avoided.
 | 
						|
**
 | 
						|
** Flattening is only attempted if all of the following are true:
 | 
						|
**
 | 
						|
**   (1)  The subquery and the outer query do not both use aggregates.
 | 
						|
**
 | 
						|
**   (2)  The subquery is not an aggregate or the outer query is not a join.
 | 
						|
**
 | 
						|
**   (3)  The subquery is not the right operand of a left outer join, or
 | 
						|
**        the subquery is not itself a join.  (Ticket #306)
 | 
						|
**
 | 
						|
**   (4)  The subquery is not DISTINCT or the outer query is not a join.
 | 
						|
**
 | 
						|
**   (5)  The subquery is not DISTINCT or the outer query does not use
 | 
						|
**        aggregates.
 | 
						|
**
 | 
						|
**   (6)  The subquery does not use aggregates or the outer query is not
 | 
						|
**        DISTINCT.
 | 
						|
**
 | 
						|
**   (7)  The subquery has a FROM clause.
 | 
						|
**
 | 
						|
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
 | 
						|
**
 | 
						|
**   (9)  The subquery does not use LIMIT or the outer query does not use
 | 
						|
**        aggregates.
 | 
						|
**
 | 
						|
**  (10)  The subquery does not use aggregates or the outer query does not
 | 
						|
**        use LIMIT.
 | 
						|
**
 | 
						|
**  (11)  The subquery and the outer query do not both have ORDER BY clauses.
 | 
						|
**
 | 
						|
**  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
 | 
						|
**        subquery has no WHERE clause.  (added by ticket #350)
 | 
						|
**
 | 
						|
** In this routine, the "p" parameter is a pointer to the outer query.
 | 
						|
** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
 | 
						|
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
 | 
						|
**
 | 
						|
** If flattening is not attempted, this routine is a no-op and returns 0.
 | 
						|
** If flattening is attempted this routine returns 1.
 | 
						|
**
 | 
						|
** All of the expression analysis must occur on both the outer query and
 | 
						|
** the subquery before this routine runs.
 | 
						|
*/
 | 
						|
static int flattenSubquery(
 | 
						|
  Parse *pParse,       /* The parsing context */
 | 
						|
  Select *p,           /* The parent or outer SELECT statement */
 | 
						|
  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
 | 
						|
  int isAgg,           /* True if outer SELECT uses aggregate functions */
 | 
						|
  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
 | 
						|
){
 | 
						|
  Select *pSub;       /* The inner query or "subquery" */
 | 
						|
  SrcList *pSrc;      /* The FROM clause of the outer query */
 | 
						|
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
 | 
						|
  ExprList *pList;    /* The result set of the outer query */
 | 
						|
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
 | 
						|
  int i;
 | 
						|
  Expr *pWhere;
 | 
						|
 | 
						|
  /* Check to see if flattening is permitted.  Return 0 if not.
 | 
						|
  */
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  pSrc = p->pSrc;
 | 
						|
  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
 | 
						|
  pSub = pSrc->a[iFrom].pSelect;
 | 
						|
  assert( pSub!=0 );
 | 
						|
  if( isAgg && subqueryIsAgg ) return 0;
 | 
						|
  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
 | 
						|
  pSubSrc = pSub->pSrc;
 | 
						|
  assert( pSubSrc );
 | 
						|
  if( pSubSrc->nSrc==0 ) return 0;
 | 
						|
  if( (pSub->isDistinct || pSub->nLimit>=0) &&  (pSrc->nSrc>1 || isAgg) ){
 | 
						|
     return 0;
 | 
						|
  }
 | 
						|
  if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
 | 
						|
  if( p->pOrderBy && pSub->pOrderBy ) return 0;
 | 
						|
 | 
						|
  /* Restriction 3:  If the subquery is a join, make sure the subquery is 
 | 
						|
  ** not used as the right operand of an outer join.  Examples of why this
 | 
						|
  ** is not allowed:
 | 
						|
  **
 | 
						|
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
 | 
						|
  **
 | 
						|
  ** If we flatten the above, we would get
 | 
						|
  **
 | 
						|
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
 | 
						|
  **
 | 
						|
  ** which is not at all the same thing.
 | 
						|
  */
 | 
						|
  if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Restriction 12:  If the subquery is the right operand of a left outer
 | 
						|
  ** join, make sure the subquery has no WHERE clause.
 | 
						|
  ** An examples of why this is not allowed:
 | 
						|
  **
 | 
						|
  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
 | 
						|
  **
 | 
						|
  ** If we flatten the above, we would get
 | 
						|
  **
 | 
						|
  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
 | 
						|
  **
 | 
						|
  ** But the t2.x>0 test will always fail on a NULL row of t2, which
 | 
						|
  ** effectively converts the OUTER JOIN into an INNER JOIN.
 | 
						|
  */
 | 
						|
  if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 
 | 
						|
      && pSub->pWhere!=0 ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If we reach this point, it means flattening is permitted for the
 | 
						|
  ** iFrom-th entry of the FROM clause in the outer query.
 | 
						|
  */
 | 
						|
 | 
						|
  /* Move all of the FROM elements of the subquery into the
 | 
						|
  ** the FROM clause of the outer query.  Before doing this, remember
 | 
						|
  ** the cursor number for the original outer query FROM element in
 | 
						|
  ** iParent.  The iParent cursor will never be used.  Subsequent code
 | 
						|
  ** will scan expressions looking for iParent references and replace
 | 
						|
  ** those references with expressions that resolve to the subquery FROM
 | 
						|
  ** elements we are now copying in.
 | 
						|
  */
 | 
						|
  iParent = pSrc->a[iFrom].iCursor;
 | 
						|
  {
 | 
						|
    int nSubSrc = pSubSrc->nSrc;
 | 
						|
    int jointype = pSrc->a[iFrom].jointype;
 | 
						|
 | 
						|
    if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
 | 
						|
      sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
 | 
						|
    }
 | 
						|
    sqliteFree(pSrc->a[iFrom].zDatabase);
 | 
						|
    sqliteFree(pSrc->a[iFrom].zName);
 | 
						|
    sqliteFree(pSrc->a[iFrom].zAlias);
 | 
						|
    if( nSubSrc>1 ){
 | 
						|
      int extra = nSubSrc - 1;
 | 
						|
      for(i=1; i<nSubSrc; i++){
 | 
						|
        pSrc = sqliteSrcListAppend(pSrc, 0, 0);
 | 
						|
      }
 | 
						|
      p->pSrc = pSrc;
 | 
						|
      for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
 | 
						|
        pSrc->a[i] = pSrc->a[i-extra];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for(i=0; i<nSubSrc; i++){
 | 
						|
      pSrc->a[i+iFrom] = pSubSrc->a[i];
 | 
						|
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
 | 
						|
    }
 | 
						|
    pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now begin substituting subquery result set expressions for 
 | 
						|
  ** references to the iParent in the outer query.
 | 
						|
  ** 
 | 
						|
  ** Example:
 | 
						|
  **
 | 
						|
  **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
 | 
						|
  **   \                     \_____________ subquery __________/          /
 | 
						|
  **    \_____________________ outer query ______________________________/
 | 
						|
  **
 | 
						|
  ** We look at every expression in the outer query and every place we see
 | 
						|
  ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
 | 
						|
  */
 | 
						|
  substExprList(p->pEList, iParent, pSub->pEList);
 | 
						|
  pList = p->pEList;
 | 
						|
  for(i=0; i<pList->nExpr; i++){
 | 
						|
    Expr *pExpr;
 | 
						|
    if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
 | 
						|
      pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( isAgg ){
 | 
						|
    substExprList(p->pGroupBy, iParent, pSub->pEList);
 | 
						|
    substExpr(p->pHaving, iParent, pSub->pEList);
 | 
						|
  }
 | 
						|
  if( pSub->pOrderBy ){
 | 
						|
    assert( p->pOrderBy==0 );
 | 
						|
    p->pOrderBy = pSub->pOrderBy;
 | 
						|
    pSub->pOrderBy = 0;
 | 
						|
  }else if( p->pOrderBy ){
 | 
						|
    substExprList(p->pOrderBy, iParent, pSub->pEList);
 | 
						|
  }
 | 
						|
  if( pSub->pWhere ){
 | 
						|
    pWhere = sqliteExprDup(pSub->pWhere);
 | 
						|
  }else{
 | 
						|
    pWhere = 0;
 | 
						|
  }
 | 
						|
  if( subqueryIsAgg ){
 | 
						|
    assert( p->pHaving==0 );
 | 
						|
    p->pHaving = p->pWhere;
 | 
						|
    p->pWhere = pWhere;
 | 
						|
    substExpr(p->pHaving, iParent, pSub->pEList);
 | 
						|
    if( pSub->pHaving ){
 | 
						|
      Expr *pHaving = sqliteExprDup(pSub->pHaving);
 | 
						|
      if( p->pHaving ){
 | 
						|
        p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
 | 
						|
      }else{
 | 
						|
        p->pHaving = pHaving;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert( p->pGroupBy==0 );
 | 
						|
    p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
 | 
						|
  }else if( p->pWhere==0 ){
 | 
						|
    p->pWhere = pWhere;
 | 
						|
  }else{
 | 
						|
    substExpr(p->pWhere, iParent, pSub->pEList);
 | 
						|
    if( pWhere ){
 | 
						|
      p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* The flattened query is distinct if either the inner or the
 | 
						|
  ** outer query is distinct. 
 | 
						|
  */
 | 
						|
  p->isDistinct = p->isDistinct || pSub->isDistinct;
 | 
						|
 | 
						|
  /* Transfer the limit expression from the subquery to the outer
 | 
						|
  ** query.
 | 
						|
  */
 | 
						|
  if( pSub->nLimit>=0 ){
 | 
						|
    if( p->nLimit<0 ){
 | 
						|
      p->nLimit = pSub->nLimit;
 | 
						|
    }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
 | 
						|
      p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  p->nOffset += pSub->nOffset;
 | 
						|
 | 
						|
  /* Finially, delete what is left of the subquery and return
 | 
						|
  ** success.
 | 
						|
  */
 | 
						|
  sqliteSelectDelete(pSub);
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Analyze the SELECT statement passed in as an argument to see if it
 | 
						|
** is a simple min() or max() query.  If it is and this query can be
 | 
						|
** satisfied using a single seek to the beginning or end of an index,
 | 
						|
** then generate the code for this SELECT and return 1.  If this is not a 
 | 
						|
** simple min() or max() query, then return 0;
 | 
						|
**
 | 
						|
** A simply min() or max() query looks like this:
 | 
						|
**
 | 
						|
**    SELECT min(a) FROM table;
 | 
						|
**    SELECT max(a) FROM table;
 | 
						|
**
 | 
						|
** The query may have only a single table in its FROM argument.  There
 | 
						|
** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
 | 
						|
** be the min() or max() of a single column of the table.  The column
 | 
						|
** in the min() or max() function must be indexed.
 | 
						|
**
 | 
						|
** The parameters to this routine are the same as for sqliteSelect().
 | 
						|
** See the header comment on that routine for additional information.
 | 
						|
*/
 | 
						|
static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
 | 
						|
  Expr *pExpr;
 | 
						|
  int iCol;
 | 
						|
  Table *pTab;
 | 
						|
  Index *pIdx;
 | 
						|
  int base;
 | 
						|
  Vdbe *v;
 | 
						|
  int seekOp;
 | 
						|
  int cont;
 | 
						|
  ExprList eList;
 | 
						|
  struct ExprList_item eListItem;
 | 
						|
 | 
						|
  /* Check to see if this query is a simple min() or max() query.  Return
 | 
						|
  ** zero if it is  not.
 | 
						|
  */
 | 
						|
  if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
 | 
						|
  if( p->pSrc->nSrc!=1 ) return 0;
 | 
						|
  if( p->pEList->nExpr!=1 ) return 0;
 | 
						|
  pExpr = p->pEList->a[0].pExpr;
 | 
						|
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
 | 
						|
  if( pExpr->pList==0 || pExpr->pList->nExpr!=1 ) return 0;
 | 
						|
  if( pExpr->token.n!=3 ) return 0;
 | 
						|
  if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
 | 
						|
    seekOp = OP_Rewind;
 | 
						|
  }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
 | 
						|
    seekOp = OP_Last;
 | 
						|
  }else{
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pExpr = pExpr->pList->a[0].pExpr;
 | 
						|
  if( pExpr->op!=TK_COLUMN ) return 0;
 | 
						|
  iCol = pExpr->iColumn;
 | 
						|
  pTab = p->pSrc->a[0].pTab;
 | 
						|
 | 
						|
  /* If we get to here, it means the query is of the correct form.
 | 
						|
  ** Check to make sure we have an index and make pIdx point to the
 | 
						|
  ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
 | 
						|
  ** key column, no index is necessary so set pIdx to NULL.  If no
 | 
						|
  ** usable index is found, return 0.
 | 
						|
  */
 | 
						|
  if( iCol<0 ){
 | 
						|
    pIdx = 0;
 | 
						|
  }else{
 | 
						|
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
						|
      assert( pIdx->nColumn>=1 );
 | 
						|
      if( pIdx->aiColumn[0]==iCol ) break;
 | 
						|
    }
 | 
						|
    if( pIdx==0 ) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Identify column types if we will be using the callback.  This
 | 
						|
  ** step is skipped if the output is going to a table or a memory cell.
 | 
						|
  ** The column names have already been generated in the calling function.
 | 
						|
  */
 | 
						|
  v = sqliteGetVdbe(pParse);
 | 
						|
  if( v==0 ) return 0;
 | 
						|
  if( eDest==SRT_Callback ){
 | 
						|
    generateColumnTypes(pParse, p->pSrc, p->pEList);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the output is destined for a temporary table, open that table.
 | 
						|
  */
 | 
						|
  if( eDest==SRT_TempTable ){
 | 
						|
    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Generating code to find the min or the max.  Basically all we have
 | 
						|
  ** to do is find the first or the last entry in the chosen index.  If
 | 
						|
  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
 | 
						|
  ** or last entry in the main table.
 | 
						|
  */
 | 
						|
  sqliteCodeVerifySchema(pParse, pTab->iDb);
 | 
						|
  base = p->pSrc->a[0].iCursor;
 | 
						|
  computeLimitRegisters(pParse, p);
 | 
						|
  sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
 | 
						|
  sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
 | 
						|
  cont = sqliteVdbeMakeLabel(v);
 | 
						|
  if( pIdx==0 ){
 | 
						|
    sqliteVdbeAddOp(v, seekOp, base, 0);
 | 
						|
  }else{
 | 
						|
    sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
 | 
						|
    sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
 | 
						|
    sqliteVdbeAddOp(v, seekOp, base+1, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_Close, base+1, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
 | 
						|
  }
 | 
						|
  eList.nExpr = 1;
 | 
						|
  memset(&eListItem, 0, sizeof(eListItem));
 | 
						|
  eList.a = &eListItem;
 | 
						|
  eList.a[0].pExpr = pExpr;
 | 
						|
  selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
 | 
						|
  sqliteVdbeResolveLabel(v, cont);
 | 
						|
  sqliteVdbeAddOp(v, OP_Close, base, 0);
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code for the given SELECT statement.
 | 
						|
**
 | 
						|
** The results are distributed in various ways depending on the
 | 
						|
** value of eDest and iParm.
 | 
						|
**
 | 
						|
**     eDest Value       Result
 | 
						|
**     ------------    -------------------------------------------
 | 
						|
**     SRT_Callback    Invoke the callback for each row of the result.
 | 
						|
**
 | 
						|
**     SRT_Mem         Store first result in memory cell iParm
 | 
						|
**
 | 
						|
**     SRT_Set         Store results as keys of a table with cursor iParm
 | 
						|
**
 | 
						|
**     SRT_Union       Store results as a key in a temporary table iParm
 | 
						|
**
 | 
						|
**     SRT_Except      Remove results from the temporary table iParm.
 | 
						|
**
 | 
						|
**     SRT_Table       Store results in temporary table iParm
 | 
						|
**
 | 
						|
** The table above is incomplete.  Additional eDist value have be added
 | 
						|
** since this comment was written.  See the selectInnerLoop() function for
 | 
						|
** a complete listing of the allowed values of eDest and their meanings.
 | 
						|
**
 | 
						|
** This routine returns the number of errors.  If any errors are
 | 
						|
** encountered, then an appropriate error message is left in
 | 
						|
** pParse->zErrMsg.
 | 
						|
**
 | 
						|
** This routine does NOT free the Select structure passed in.  The
 | 
						|
** calling function needs to do that.
 | 
						|
**
 | 
						|
** The pParent, parentTab, and *pParentAgg fields are filled in if this
 | 
						|
** SELECT is a subquery.  This routine may try to combine this SELECT
 | 
						|
** with its parent to form a single flat query.  In so doing, it might
 | 
						|
** change the parent query from a non-aggregate to an aggregate query.
 | 
						|
** For that reason, the pParentAgg flag is passed as a pointer, so it
 | 
						|
** can be changed.
 | 
						|
**
 | 
						|
** Example 1:   The meaning of the pParent parameter.
 | 
						|
**
 | 
						|
**    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
 | 
						|
**    \                      \_______ subquery _______/        /
 | 
						|
**     \                                                      /
 | 
						|
**      \____________________ outer query ___________________/
 | 
						|
**
 | 
						|
** This routine is called for the outer query first.   For that call,
 | 
						|
** pParent will be NULL.  During the processing of the outer query, this 
 | 
						|
** routine is called recursively to handle the subquery.  For the recursive
 | 
						|
** call, pParent will point to the outer query.  Because the subquery is
 | 
						|
** the second element in a three-way join, the parentTab parameter will
 | 
						|
** be 1 (the 2nd value of a 0-indexed array.)
 | 
						|
*/
 | 
						|
int sqliteSelect(
 | 
						|
  Parse *pParse,         /* The parser context */
 | 
						|
  Select *p,             /* The SELECT statement being coded. */
 | 
						|
  int eDest,             /* How to dispose of the results */
 | 
						|
  int iParm,             /* A parameter used by the eDest disposal method */
 | 
						|
  Select *pParent,       /* Another SELECT for which this is a sub-query */
 | 
						|
  int parentTab,         /* Index in pParent->pSrc of this query */
 | 
						|
  int *pParentAgg        /* True if pParent uses aggregate functions */
 | 
						|
){
 | 
						|
  int i;
 | 
						|
  WhereInfo *pWInfo;
 | 
						|
  Vdbe *v;
 | 
						|
  int isAgg = 0;         /* True for select lists like "count(*)" */
 | 
						|
  ExprList *pEList;      /* List of columns to extract. */
 | 
						|
  SrcList *pTabList;     /* List of tables to select from */
 | 
						|
  Expr *pWhere;          /* The WHERE clause.  May be NULL */
 | 
						|
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
 | 
						|
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
 | 
						|
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
 | 
						|
  int isDistinct;        /* True if the DISTINCT keyword is present */
 | 
						|
  int distinct;          /* Table to use for the distinct set */
 | 
						|
  int rc = 1;            /* Value to return from this function */
 | 
						|
 | 
						|
  if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
 | 
						|
  if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
 | 
						|
 | 
						|
  /* If there is are a sequence of queries, do the earlier ones first.
 | 
						|
  */
 | 
						|
  if( p->pPrior ){
 | 
						|
    return multiSelect(pParse, p, eDest, iParm);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Make local copies of the parameters for this query.
 | 
						|
  */
 | 
						|
  pTabList = p->pSrc;
 | 
						|
  pWhere = p->pWhere;
 | 
						|
  pOrderBy = p->pOrderBy;
 | 
						|
  pGroupBy = p->pGroupBy;
 | 
						|
  pHaving = p->pHaving;
 | 
						|
  isDistinct = p->isDistinct;
 | 
						|
 | 
						|
  /* Allocate VDBE cursors for each table in the FROM clause
 | 
						|
  */
 | 
						|
  sqliteSrcListAssignCursors(pParse, pTabList);
 | 
						|
 | 
						|
  /* 
 | 
						|
  ** Do not even attempt to generate any code if we have already seen
 | 
						|
  ** errors before this routine starts.
 | 
						|
  */
 | 
						|
  if( pParse->nErr>0 ) goto select_end;
 | 
						|
 | 
						|
  /* Expand any "*" terms in the result set.  (For example the "*" in
 | 
						|
  ** "SELECT * FROM t1")  The fillInColumnlist() routine also does some
 | 
						|
  ** other housekeeping - see the header comment for details.
 | 
						|
  */
 | 
						|
  if( fillInColumnList(pParse, p) ){
 | 
						|
    goto select_end;
 | 
						|
  }
 | 
						|
  pWhere = p->pWhere;
 | 
						|
  pEList = p->pEList;
 | 
						|
  if( pEList==0 ) goto select_end;
 | 
						|
 | 
						|
  /* If writing to memory or generating a set
 | 
						|
  ** only a single column may be output.
 | 
						|
  */
 | 
						|
  if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
 | 
						|
    sqliteErrorMsg(pParse, "only a single result allowed for "
 | 
						|
       "a SELECT that is part of an expression");
 | 
						|
    goto select_end;
 | 
						|
  }
 | 
						|
 | 
						|
  /* ORDER BY is ignored for some destinations.
 | 
						|
  */
 | 
						|
  switch( eDest ){
 | 
						|
    case SRT_Union:
 | 
						|
    case SRT_Except:
 | 
						|
    case SRT_Discard:
 | 
						|
      pOrderBy = 0;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  /* At this point, we should have allocated all the cursors that we
 | 
						|
  ** need to handle subquerys and temporary tables.  
 | 
						|
  **
 | 
						|
  ** Resolve the column names and do a semantics check on all the expressions.
 | 
						|
  */
 | 
						|
  for(i=0; i<pEList->nExpr; i++){
 | 
						|
    if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
    if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pWhere ){
 | 
						|
    if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
    if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pHaving ){
 | 
						|
    if( pGroupBy==0 ){
 | 
						|
      sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
    if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
    if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pOrderBy ){
 | 
						|
    for(i=0; i<pOrderBy->nExpr; i++){
 | 
						|
      int iCol;
 | 
						|
      Expr *pE = pOrderBy->a[i].pExpr;
 | 
						|
      if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
 | 
						|
        sqliteExprDelete(pE);
 | 
						|
        pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
 | 
						|
      }
 | 
						|
      if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
 | 
						|
        goto select_end;
 | 
						|
      }
 | 
						|
      if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
 | 
						|
        goto select_end;
 | 
						|
      }
 | 
						|
      if( sqliteExprIsConstant(pE) ){
 | 
						|
        if( sqliteExprIsInteger(pE, &iCol)==0 ){
 | 
						|
          sqliteErrorMsg(pParse,
 | 
						|
             "ORDER BY terms must not be non-integer constants");
 | 
						|
          goto select_end;
 | 
						|
        }else if( iCol<=0 || iCol>pEList->nExpr ){
 | 
						|
          sqliteErrorMsg(pParse, 
 | 
						|
             "ORDER BY column number %d out of range - should be "
 | 
						|
             "between 1 and %d", iCol, pEList->nExpr);
 | 
						|
          goto select_end;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pGroupBy ){
 | 
						|
    for(i=0; i<pGroupBy->nExpr; i++){
 | 
						|
      int iCol;
 | 
						|
      Expr *pE = pGroupBy->a[i].pExpr;
 | 
						|
      if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
 | 
						|
        sqliteExprDelete(pE);
 | 
						|
        pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
 | 
						|
      }
 | 
						|
      if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
 | 
						|
        goto select_end;
 | 
						|
      }
 | 
						|
      if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
 | 
						|
        goto select_end;
 | 
						|
      }
 | 
						|
      if( sqliteExprIsConstant(pE) ){
 | 
						|
        if( sqliteExprIsInteger(pE, &iCol)==0 ){
 | 
						|
          sqliteErrorMsg(pParse,
 | 
						|
            "GROUP BY terms must not be non-integer constants");
 | 
						|
          goto select_end;
 | 
						|
        }else if( iCol<=0 || iCol>pEList->nExpr ){
 | 
						|
          sqliteErrorMsg(pParse,
 | 
						|
             "GROUP BY column number %d out of range - should be "
 | 
						|
             "between 1 and %d", iCol, pEList->nExpr);
 | 
						|
          goto select_end;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Begin generating code.
 | 
						|
  */
 | 
						|
  v = sqliteGetVdbe(pParse);
 | 
						|
  if( v==0 ) goto select_end;
 | 
						|
 | 
						|
  /* Identify column names if we will be using them in a callback.  This
 | 
						|
  ** step is skipped if the output is going to some other destination.
 | 
						|
  */
 | 
						|
  if( eDest==SRT_Callback ){
 | 
						|
    generateColumnNames(pParse, pTabList, pEList);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check for the special case of a min() or max() function by itself
 | 
						|
  ** in the result set.
 | 
						|
  */
 | 
						|
  if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
 | 
						|
    rc = 0;
 | 
						|
    goto select_end;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Generate code for all sub-queries in the FROM clause
 | 
						|
  */
 | 
						|
  for(i=0; i<pTabList->nSrc; i++){
 | 
						|
    const char *zSavedAuthContext;
 | 
						|
    int needRestoreContext;
 | 
						|
 | 
						|
    if( pTabList->a[i].pSelect==0 ) continue;
 | 
						|
    if( pTabList->a[i].zName!=0 ){
 | 
						|
      zSavedAuthContext = pParse->zAuthContext;
 | 
						|
      pParse->zAuthContext = pTabList->a[i].zName;
 | 
						|
      needRestoreContext = 1;
 | 
						|
    }else{
 | 
						|
      needRestoreContext = 0;
 | 
						|
    }
 | 
						|
    sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable, 
 | 
						|
                 pTabList->a[i].iCursor, p, i, &isAgg);
 | 
						|
    if( needRestoreContext ){
 | 
						|
      pParse->zAuthContext = zSavedAuthContext;
 | 
						|
    }
 | 
						|
    pTabList = p->pSrc;
 | 
						|
    pWhere = p->pWhere;
 | 
						|
    if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
 | 
						|
      pOrderBy = p->pOrderBy;
 | 
						|
    }
 | 
						|
    pGroupBy = p->pGroupBy;
 | 
						|
    pHaving = p->pHaving;
 | 
						|
    isDistinct = p->isDistinct;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check to see if this is a subquery that can be "flattened" into its parent.
 | 
						|
  ** If flattening is a possiblity, do so and return immediately.  
 | 
						|
  */
 | 
						|
  if( pParent && pParentAgg &&
 | 
						|
      flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
 | 
						|
    if( isAgg ) *pParentAgg = 1;
 | 
						|
    return rc;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Set the limiter.
 | 
						|
  */
 | 
						|
  computeLimitRegisters(pParse, p);
 | 
						|
 | 
						|
  /* Identify column types if we will be using a callback.  This
 | 
						|
  ** step is skipped if the output is going to a destination other
 | 
						|
  ** than a callback.
 | 
						|
  **
 | 
						|
  ** We have to do this separately from the creation of column names
 | 
						|
  ** above because if the pTabList contains views then they will not
 | 
						|
  ** have been resolved and we will not know the column types until
 | 
						|
  ** now.
 | 
						|
  */
 | 
						|
  if( eDest==SRT_Callback ){
 | 
						|
    generateColumnTypes(pParse, pTabList, pEList);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the output is destined for a temporary table, open that table.
 | 
						|
  */
 | 
						|
  if( eDest==SRT_TempTable ){
 | 
						|
    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Do an analysis of aggregate expressions.
 | 
						|
  */
 | 
						|
  sqliteAggregateInfoReset(pParse);
 | 
						|
  if( isAgg || pGroupBy ){
 | 
						|
    assert( pParse->nAgg==0 );
 | 
						|
    isAgg = 1;
 | 
						|
    for(i=0; i<pEList->nExpr; i++){
 | 
						|
      if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
 | 
						|
        goto select_end;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( pGroupBy ){
 | 
						|
      for(i=0; i<pGroupBy->nExpr; i++){
 | 
						|
        if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
 | 
						|
          goto select_end;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
    if( pOrderBy ){
 | 
						|
      for(i=0; i<pOrderBy->nExpr; i++){
 | 
						|
        if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
 | 
						|
          goto select_end;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Reset the aggregator
 | 
						|
  */
 | 
						|
  if( isAgg ){
 | 
						|
    sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
 | 
						|
    for(i=0; i<pParse->nAgg; i++){
 | 
						|
      FuncDef *pFunc;
 | 
						|
      if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
 | 
						|
        sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( pGroupBy==0 ){
 | 
						|
      sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Initialize the memory cell to NULL
 | 
						|
  */
 | 
						|
  if( eDest==SRT_Mem ){
 | 
						|
    sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
    sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Open a temporary table to use for the distinct set.
 | 
						|
  */
 | 
						|
  if( isDistinct ){
 | 
						|
    distinct = pParse->nTab++;
 | 
						|
    sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
 | 
						|
  }else{
 | 
						|
    distinct = -1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Begin the database scan
 | 
						|
  */
 | 
						|
  pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0, 
 | 
						|
                            pGroupBy ? 0 : &pOrderBy);
 | 
						|
  if( pWInfo==0 ) goto select_end;
 | 
						|
 | 
						|
  /* Use the standard inner loop if we are not dealing with
 | 
						|
  ** aggregates
 | 
						|
  */
 | 
						|
  if( !isAgg ){
 | 
						|
    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
 | 
						|
                    iParm, pWInfo->iContinue, pWInfo->iBreak) ){
 | 
						|
       goto select_end;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If we are dealing with aggregates, then do the special aggregate
 | 
						|
  ** processing.  
 | 
						|
  */
 | 
						|
  else{
 | 
						|
    AggExpr *pAgg;
 | 
						|
    if( pGroupBy ){
 | 
						|
      int lbl1;
 | 
						|
      for(i=0; i<pGroupBy->nExpr; i++){
 | 
						|
        sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
 | 
						|
      if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
 | 
						|
      lbl1 = sqliteVdbeMakeLabel(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
 | 
						|
      for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
 | 
						|
        if( pAgg->isAgg ) continue;
 | 
						|
        sqliteExprCode(pParse, pAgg->pExpr);
 | 
						|
        sqliteVdbeAddOp(v, OP_AggSet, 0, i);
 | 
						|
      }
 | 
						|
      sqliteVdbeResolveLabel(v, lbl1);
 | 
						|
    }
 | 
						|
    for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
 | 
						|
      Expr *pE;
 | 
						|
      int nExpr;
 | 
						|
      FuncDef *pDef;
 | 
						|
      if( !pAgg->isAgg ) continue;
 | 
						|
      assert( pAgg->pFunc!=0 );
 | 
						|
      assert( pAgg->pFunc->xStep!=0 );
 | 
						|
      pDef = pAgg->pFunc;
 | 
						|
      pE = pAgg->pExpr;
 | 
						|
      assert( pE!=0 );
 | 
						|
      assert( pE->op==TK_AGG_FUNCTION );
 | 
						|
      nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
 | 
						|
      sqliteVdbeAddOp(v, OP_Integer, i, 0);
 | 
						|
      sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* End the database scan loop.
 | 
						|
  */
 | 
						|
  sqliteWhereEnd(pWInfo);
 | 
						|
 | 
						|
  /* If we are processing aggregates, we need to set up a second loop
 | 
						|
  ** over all of the aggregate values and process them.
 | 
						|
  */
 | 
						|
  if( isAgg ){
 | 
						|
    int endagg = sqliteVdbeMakeLabel(v);
 | 
						|
    int startagg;
 | 
						|
    startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
 | 
						|
    pParse->useAgg = 1;
 | 
						|
    if( pHaving ){
 | 
						|
      sqliteExprIfFalse(pParse, pHaving, startagg, 1);
 | 
						|
    }
 | 
						|
    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
 | 
						|
                    iParm, startagg, endagg) ){
 | 
						|
      goto select_end;
 | 
						|
    }
 | 
						|
    sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
 | 
						|
    sqliteVdbeResolveLabel(v, endagg);
 | 
						|
    sqliteVdbeAddOp(v, OP_Noop, 0, 0);
 | 
						|
    pParse->useAgg = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If there is an ORDER BY clause, then we need to sort the results
 | 
						|
  ** and send them to the callback one by one.
 | 
						|
  */
 | 
						|
  if( pOrderBy ){
 | 
						|
    generateSortTail(p, v, pEList->nExpr, eDest, iParm);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If this was a subquery, we have now converted the subquery into a
 | 
						|
  ** temporary table.  So delete the subquery structure from the parent
 | 
						|
  ** to prevent this subquery from being evaluated again and to force the
 | 
						|
  ** the use of the temporary table.
 | 
						|
  */
 | 
						|
  if( pParent ){
 | 
						|
    assert( pParent->pSrc->nSrc>parentTab );
 | 
						|
    assert( pParent->pSrc->a[parentTab].pSelect==p );
 | 
						|
    sqliteSelectDelete(p);
 | 
						|
    pParent->pSrc->a[parentTab].pSelect = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* The SELECT was successfully coded.   Set the return code to 0
 | 
						|
  ** to indicate no errors.
 | 
						|
  */
 | 
						|
  rc = 0;
 | 
						|
 | 
						|
  /* Control jumps to here if an error is encountered above, or upon
 | 
						|
  ** successful coding of the SELECT.
 | 
						|
  */
 | 
						|
select_end:
 | 
						|
  sqliteAggregateInfoReset(pParse);
 | 
						|
  return rc;
 | 
						|
}
 |