457 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html><head>
 | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0">
 | |
| <meta http-equiv="content-type" content="text/html; charset=UTF-8">
 | |
| <link href="sqlite.css" rel="stylesheet">
 | |
| <title>Floating Pointer Numbers</title>
 | |
| <!-- path= -->
 | |
| </head>
 | |
| <body>
 | |
| <div class=nosearch>
 | |
| <a href="index.html">
 | |
| <img class="logo" src="images/sqlite370_banner.gif" alt="SQLite" border="0">
 | |
| </a>
 | |
| <div><!-- IE hack to prevent disappearing logo --></div>
 | |
| <div class="tagline desktoponly">
 | |
| Small. Fast. Reliable.<br>Choose any three.
 | |
| </div>
 | |
| <div class="menu mainmenu">
 | |
| <ul>
 | |
| <li><a href="index.html">Home</a>
 | |
| <li class='mobileonly'><a href="javascript:void(0)" onclick='toggle_div("submenu")'>Menu</a>
 | |
| <li class='wideonly'><a href='about.html'>About</a>
 | |
| <li class='desktoponly'><a href="docs.html">Documentation</a>
 | |
| <li class='desktoponly'><a href="download.html">Download</a>
 | |
| <li class='wideonly'><a href='copyright.html'>License</a>
 | |
| <li class='desktoponly'><a href="support.html">Support</a>
 | |
| <li class='desktoponly'><a href="prosupport.html">Purchase</a>
 | |
| <li class='search' id='search_menubutton'>
 | |
| <a href="javascript:void(0)" onclick='toggle_search()'>Search</a>
 | |
| </ul>
 | |
| </div>
 | |
| <div class="menu submenu" id="submenu">
 | |
| <ul>
 | |
| <li><a href='about.html'>About</a>
 | |
| <li><a href='docs.html'>Documentation</a>
 | |
| <li><a href='download.html'>Download</a>
 | |
| <li><a href='support.html'>Support</a>
 | |
| <li><a href='prosupport.html'>Purchase</a>
 | |
| </ul>
 | |
| </div>
 | |
| <div class="searchmenu" id="searchmenu">
 | |
| <form method="GET" action="search">
 | |
| <select name="s" id="searchtype">
 | |
| <option value="d">Search Documentation</option>
 | |
| <option value="c">Search Changelog</option>
 | |
| </select>
 | |
| <input type="text" name="q" id="searchbox" value="">
 | |
| <input type="submit" value="Go">
 | |
| </form>
 | |
| </div>
 | |
| </div>
 | |
| <script>
 | |
| function toggle_div(nm) {
 | |
| var w = document.getElementById(nm);
 | |
| if( w.style.display=="block" ){
 | |
| w.style.display = "none";
 | |
| }else{
 | |
| w.style.display = "block";
 | |
| }
 | |
| }
 | |
| function toggle_search() {
 | |
| var w = document.getElementById("searchmenu");
 | |
| if( w.style.display=="block" ){
 | |
| w.style.display = "none";
 | |
| } else {
 | |
| w.style.display = "block";
 | |
| setTimeout(function(){
 | |
| document.getElementById("searchbox").focus()
 | |
| }, 30);
 | |
| }
 | |
| }
 | |
| function div_off(nm){document.getElementById(nm).style.display="none";}
 | |
| window.onbeforeunload = function(e){div_off("submenu");}
 | |
| /* Disable the Search feature if we are not operating from CGI, since */
 | |
| /* Search is accomplished using CGI and will not work without it. */
 | |
| if( !location.origin || !location.origin.match || !location.origin.match(/http/) ){
 | |
| document.getElementById("search_menubutton").style.display = "none";
 | |
| }
 | |
| /* Used by the Hide/Show button beside syntax diagrams, to toggle the */
 | |
| function hideorshow(btn,obj){
 | |
| var x = document.getElementById(obj);
 | |
| var b = document.getElementById(btn);
 | |
| if( x.style.display!='none' ){
 | |
| x.style.display = 'none';
 | |
| b.innerHTML='show';
 | |
| }else{
 | |
| x.style.display = '';
 | |
| b.innerHTML='hide';
 | |
| }
 | |
| return false;
 | |
| }
 | |
| </script>
 | |
| </div>
 | |
| <div class=fancy>
 | |
| <div class=nosearch>
 | |
| <div class="fancy_title">
 | |
| Floating Pointer Numbers
 | |
| </div>
 | |
| <div class="fancy_toc">
 | |
| <a onclick="toggle_toc()">
 | |
| <span class="fancy_toc_mark" id="toc_mk">►</span>
 | |
| Table Of Contents
 | |
| </a>
 | |
| <div id="toc_sub"><div class="fancy-toc1"><a href="#how_sqlite_stores_numbers">1. How SQLite Stores Numbers</a></div>
 | |
| <div class="fancy-toc2"><a href="#floating_point_accuracy">1.1. Floating-Point Accuracy</a></div>
 | |
| <div class="fancy-toc2"><a href="#floating_point_numbers">1.2. Floating Point Numbers</a></div>
 | |
| <div class="fancy-toc3"><a href="#unrepresentable_numbers">1.2.1. Unrepresentable numbers</a></div>
 | |
| <div class="fancy-toc3"><a href="#is_it_close_enough_">1.2.2. Is it close enough?</a></div>
 | |
| <div class="fancy-toc1"><a href="#extensions_for_dealing_with_floating_point_numbers">2. Extensions For Dealing With Floating Point Numbers</a></div>
 | |
| <div class="fancy-toc2"><a href="#the_ieee754_c_extension">2.1. The ieee754.c Extension</a></div>
 | |
| <div class="fancy-toc3"><a href="#the_ieee754_function">2.1.1. The ieee754() function</a></div>
 | |
| <div class="fancy-toc3"><a href="#the_ieee754_mantissa_and_ieee754_exponent_functions">2.1.2. The ieee754_mantissa() and ieee754_exponent() functions</a></div>
 | |
| <div class="fancy-toc3"><a href="#the_ieee754_from_blob_and_ieee754_to_blob_functions">2.1.3. The ieee754_from_blob() and ieee754_to_blob() functions</a></div>
 | |
| <div class="fancy-toc2"><a href="#the_decimal_c_extension">2.2. The decimal.c Extension</a></div>
 | |
| <div class="fancy-toc1"><a href="#techniques">3. Techniques</a></div>
 | |
| </div>
 | |
| </div>
 | |
| <script>
 | |
| function toggle_toc(){
 | |
| var sub = document.getElementById("toc_sub")
 | |
| var mk = document.getElementById("toc_mk")
 | |
| if( sub.style.display!="block" ){
 | |
| sub.style.display = "block";
 | |
| mk.innerHTML = "▼";
 | |
| } else {
 | |
| sub.style.display = "none";
 | |
| mk.innerHTML = "►";
 | |
| }
 | |
| }
 | |
| </script>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <h1 id="how_sqlite_stores_numbers"><span>1. </span>How SQLite Stores Numbers</h1>
 | |
| 
 | |
| <p>
 | |
| SQLite stores integer values in the 64-bit 
 | |
| <a href="https://en.wikipedia.org/wiki/Two%27s_complement">twos-complement</a>
 | |
| format.
 | |
| This gives a storage range of -9223372036854775808 to +9223372036854775807,
 | |
| inclusive.  Integers within this range are exact.
 | |
| 
 | |
| </p><p>
 | |
| So-called "REAL" or floating point values are stored in the
 | |
| <a href="https://en.wikipedia.org/wiki/IEEE_754">IEEE 754</a>
 | |
| <a href="https://en.wikipedia.org/wiki/Double-precision_floating-point_format">Binary-64</a>
 | |
| format.
 | |
| This gives a range of positive values between approximately
 | |
| 1.7976931348623157e+308 and 4.9406564584124654e-324 with an equivalent
 | |
| range of negative values.  A binary64 can also be 0.0 (and -0.0), positive
 | |
| and negative infinity and "NaN" or "Not-a-Number".  Floating point
 | |
| values are approximate.
 | |
| 
 | |
| </p><p>
 | |
| Pay close attention to the last sentence in the previous paragraph:
 | |
| </p><blockquote><b>
 | |
| Floating point values are approximate ← <u>Always</u> remember this!
 | |
| </b></blockquote>
 | |
| 
 | |
| <p>
 | |
| If you need an exact answer, you should not use binary64 floating-point
 | |
| values, in SQLite or in any other product.  This is not an SQLite limitation.
 | |
| It is a mathematical limitation inherent in the design of floating-point numbers.
 | |
| 
 | |
| </p><h2 id="floating_point_accuracy"><span>1.1. </span>Floating-Point Accuracy</h2>
 | |
| 
 | |
| <p>
 | |
| SQLite promises to preserve the 15 most significant digits of a floating
 | |
| point value.  However, it makes no guarantees about the accuracy of
 | |
| computations on floating point values, as no such guarantees are possible.
 | |
| Performing math on floating-point values introduces error.
 | |
| For example, consider what happens if you attempt to subtract two floating-point
 | |
| numbers of similar magnitude:
 | |
| 
 | |
| </p><blockquote>
 | |
| <table border="0" cellpadding="0" cellspacing="0">
 | |
| <tr><td align="right">1152693165.1106291898</td></tr>
 | |
| <tr><td align="right">-1152693165.1106280772</td></tr>
 | |
| <tr><td><hr>
 | |
| </td></tr><tr><td align="right">0.0000011126
 | |
| </td></tr></table>
 | |
| </blockquote>
 | |
| 
 | |
| <p>The result shown above (0.0000011126) is the correct answer.  But if you
 | |
| do this computation using binary64 floating-point, the answer you get is
 | |
| 0.00000095367431640625 - an error of about 14%.  If you do many similar
 | |
| computations as part of your program, the errors add up so that your final
 | |
| result might be completely meaningless.
 | |
| 
 | |
| </p><p>The error arises because only about the first 15 significant digits of
 | |
| each number are stored accurately, and first the difference between the two numbers
 | |
| being subtracted is in the 16th digit.  
 | |
| 
 | |
| </p><h2 id="floating_point_numbers"><span>1.2. </span>Floating Point Numbers</h2>
 | |
| 
 | |
| <p>
 | |
| The binary64 floating-point format uses 64 bits per number.  Hence there
 | |
| are 1.845e+19 different possible floating point values.  On the other hand
 | |
| there are infinitely many real numbers in the range of 
 | |
| 1.7977e+308 and 4.9407e-324.  It follows then that binary64 cannot possibly
 | |
| represent all possible real numbers within that range.  Approximations are
 | |
| required.
 | |
| 
 | |
| </p><p>
 | |
| An IEEE 754 floating-point value is an integer multiplied by a power
 | |
| of two:
 | |
| 
 | |
| </p><blockquote>
 | |
| <big>M × 2<sup><small>E</small></sup></big>
 | |
| </blockquote>
 | |
| 
 | |
| <p>The M value is the "mantissa" and E is the "exponent".  Both
 | |
| M and E are integers.
 | |
| 
 | |
| </p><p>For Binary64, M is a 53-bit integer and E is an 11-bit integer that
 | |
| offset so that represents a range of values between -1074 and +972, inclusive.
 | |
| 
 | |
| </p><p><i>(NB:  The usual description of IEEE 754 is more complex, and it is important
 | |
| to understand the added complexity if you really want to appreciate the details,
 | |
| merits, and limitations of IEEE 754.  However, the integer description shown
 | |
| here, while not exactly right, is easier to understand and is sufficient for
 | |
| the purposes of this article.)</i></p>
 | |
| 
 | |
| <h3 id="unrepresentable_numbers"><span>1.2.1. </span>Unrepresentable numbers</h3>
 | |
| 
 | |
| <p>Not ever decimal number with fewer than 16 significant digits can be
 | |
| represented exactly as a binary64 number.  In fact, most decimal numbers
 | |
| with digits to the right of the decimal point lack an exact binary64
 | |
| equivalent.  For example, if you have a database column that is intended
 | |
| to hold an item price in dollars and cents, the only cents value that
 | |
| can be exactly represented are 0.00, 0.25, 0.50, and 0.75.  Any other
 | |
| numbers to the right of the decimal point result in an approximation.
 | |
| If you provide a "price" value of 47.49, that number will be represented
 | |
| in binary64 as:
 | |
| 
 | |
| </p><blockquote>
 | |
| 6683623321994527 × 2<sup><small>-47</small></sup>
 | |
| </blockquote>
 | |
| 
 | |
| <p>Which works out to be:
 | |
| 
 | |
| </p><blockquote>
 | |
| 47.49000000000000198951966012828052043914794921875
 | |
| </blockquote>
 | |
| 
 | |
| <p>That number is very close to 47.49, but it is not exact.  It is a little
 | |
| too big.  If we reduce M by one to 6683623321994526 so that we have the
 | |
| next smaller possible binary64 value, we get:
 | |
| 
 | |
| </p><blockquote>
 | |
| 47.4899999999999948840923025272786617279052734375
 | |
| </blockquote>
 | |
| 
 | |
| 
 | |
| <p>
 | |
| This second number is too small.
 | |
| The first number is closer to the desired value of 47.49, so that is the
 | |
| one that gets used.  But it is not exact.  Most decimal values work this
 | |
| way in IEEE 754.  Remember the key point we made above:
 | |
| 
 | |
| </p><blockquote><b>
 | |
| Floating point values are approximate.
 | |
| </b></blockquote>
 | |
| 
 | |
| <p>If you remember nothing else about floating-point values, 
 | |
| please don't forget this one key idea.
 | |
| 
 | |
| </p><h3 id="is_it_close_enough_"><span>1.2.2. </span>Is it close enough?</h3>
 | |
| 
 | |
| <p>The precision provided by IEEE 754 Binary64 is sufficient for most computations.
 | |
| For example, if "47.49" represents a price and inflation is running
 | |
| at 2% per year, then the price is going up by about 0.0000000301 dollars per
 | |
| second.  The error in the recorded value of 47.49 represents about 66 nanoseconds
 | |
| worth of inflation.  So if the 47.49 price is exact
 | |
| when you enter it, then the effects of inflation will cause the true value to
 | |
| exactly equal the value actually stored
 | |
| (47.4900000000000019895196601282805204391479492187) in less than 
 | |
| one ten-millionth of a second.
 | |
| Surely that level of precision is sufficient for most purposes?
 | |
| 
 | |
| </p><h1 id="extensions_for_dealing_with_floating_point_numbers"><span>2. </span>Extensions For Dealing With Floating Point Numbers</h1>
 | |
| 
 | |
| <a name="ieee754ext"></a>
 | |
| 
 | |
| <h2 id="the_ieee754_c_extension"><span>2.1. </span>The ieee754.c Extension</h2>
 | |
| 
 | |
| <p>The ieee754 extension converts a floating point number between its
 | |
| binary64 representation and the M×2<sup><small>E</small></sup> format.
 | |
| In other words in the expression:
 | |
| 
 | |
| </p><blockquote>
 | |
| <big>F = M × 2<sup><small>E</small></sup></big>
 | |
| </blockquote>
 | |
| 
 | |
| <p>The ieee754 extension converts between F and (M,E) and back again.
 | |
| 
 | |
| </p><p>The ieee754 extension is not part of the <a href="amalgamation.html">amalgamation</a>, but it is included
 | |
| by default in the <a href="cli.html">CLI</a>.  If you want to include the ieee754 extension in your
 | |
| application, you will need to compile and load it separately.
 | |
| 
 | |
| <a name="ieee754"></a>
 | |
| 
 | |
| </p><h3 id="the_ieee754_function"><span>2.1.1. </span>The ieee754() function</h3>
 | |
| 
 | |
| <p>The ieee754(F) SQL function takes a single floating-point argument
 | |
| as its input and returns a string that looks like this:
 | |
| 
 | |
| </p><blockquote>
 | |
| 'ieee754(M,E)'
 | |
| </blockquote>
 | |
| 
 | |
| <p>Except that the M and E are replaced by the mantissa and exponent of the
 | |
| floating point number.  For example:
 | |
| 
 | |
| </p><div class="codeblock"><pre>sqlite> .mode box
 | |
| sqlite> SELECT ieee754(47.49) AS x;
 | |
| ┌───────────────────────────────┐
 | |
| │               x               │
 | |
| ├───────────────────────────────┤
 | |
| │ ieee754(6683623321994527,-47) │
 | |
| └───────────────────────────────┘
 | |
| </pre></div>
 | |
| 
 | |
| <p>
 | |
| Going in the other direction, the 2-argument version of ieee754() takes
 | |
| the M and E values and converts them into the corresponding F value:
 | |
| 
 | |
| </p><div class="codeblock"><pre>sqlite> select ieee754(6683623321994527,-47) as x;
 | |
| ┌───────┐
 | |
| │   x   │
 | |
| ├───────┤
 | |
| │ 47.49 │
 | |
| └───────┘
 | |
| </pre></div>
 | |
| 
 | |
| <a name="ieee754m"></a>
 | |
| 
 | |
| <h3 id="the_ieee754_mantissa_and_ieee754_exponent_functions"><span>2.1.2. </span>The ieee754_mantissa() and ieee754_exponent() functions</h3>
 | |
| 
 | |
| <p>The text output of the one-argument form of ieee754() is great for human
 | |
| readability, but it awkward to use as part of a larger expression.  Hence
 | |
| The ieee754_mantissa() and ieee754_exponent() routines were added to return
 | |
| the M and E values corresponding to their single argument F
 | |
| value.
 | |
| For example:
 | |
| 
 | |
| </p><div class="codeblock"><pre>sqlite> .mode box
 | |
| sqlite> SELECT ieee754_mantissa(47.49) AS M, ieee754_exponent(47.49) AS E;
 | |
| ┌──────────────────┬─────┐
 | |
| │        M         │  E  │
 | |
| ├──────────────────┼─────┤
 | |
| │ 6683623321994527 │ -47 │
 | |
| └──────────────────┴─────┘
 | |
| </pre></div>
 | |
| 
 | |
| <a name="ieee754b"></a>
 | |
| 
 | |
| <h3 id="the_ieee754_from_blob_and_ieee754_to_blob_functions"><span>2.1.3. </span>The ieee754_from_blob() and ieee754_to_blob() functions</h3>
 | |
| 
 | |
| <p>The ieee754_to_blob(F) SQL function converts the floating point number F
 | |
| into an 8-byte BLOB that is the big-endian binary64 encoding of that number.
 | |
| The ieee754_from_blob(B) function goes the other way, converting an 8-byte
 | |
| blob into the floating-point value that the binary64 encoding represents.
 | |
| 
 | |
| </p><p>So, for example, if you read
 | |
| <a href="'https://en.wikipedia.org/wiki/Double-precision_floating-point_format'">on
 | |
| Wikipedia</a> that the encoding for the minimum positive binary64 value is
 | |
| 0x0000000000000001, then you can find the corresponding floating point value
 | |
| like this:
 | |
| 
 | |
| </p><div class="codeblock"><pre>sqlite> .mode box
 | |
| sqlite> SELECT ieee754_from_blob(x'0000000000000001') AS F;
 | |
| ┌───────────────────────┐
 | |
| │           F           │
 | |
| ├───────────────────────┤
 | |
| │ 4.94065645841247e-324 │
 | |
| └───────────────────────┘
 | |
| </pre></div>
 | |
| 
 | |
| <p>Or go the other way:
 | |
| 
 | |
| </p><div class="codeblock"><pre>sqlite> .mode box
 | |
| sqlite> SELECT quote(ieee754_to_blob(4.94065645841247e-324)) AS binary64;
 | |
| ┌─────────────────────┐
 | |
| │      binary64       │
 | |
| ├─────────────────────┤
 | |
| │ X'0000000000000001' │
 | |
| └─────────────────────┘
 | |
| </pre></div>
 | |
| 
 | |
| <a name="decext"></a>
 | |
| 
 | |
| <h2 id="the_decimal_c_extension"><span>2.2. </span>The decimal.c Extension</h2>
 | |
| 
 | |
| <p>The decimal extension provides arbitrary-precision decimal arithmetic on
 | |
| numbers stored as text strings.  Because the numbers are stored to arbitrary
 | |
| precision and as text, no approximations are needed.  Computations can be
 | |
| done exactly.
 | |
| 
 | |
| </p><p>The decimal extension is not (currently) part of the SQLite <a href="amalgamation.html">amalgamation</a>.
 | |
| However, it is included in the <a href="cli.html">CLI</a>.
 | |
| 
 | |
| </p><p>There are three math functions available:
 | |
| 
 | |
| </p><p>
 | |
| </p><ul>
 | |
| <li> decimal_add(A,B)
 | |
| </li><li> decimal_sub(A,B)
 | |
| </li><li> decimal_mul(A,B)
 | |
| </li></ul>
 | |
| 
 | |
| 
 | |
| <p>These functions respectively add, subtract, and multiply their arguments
 | |
| and return a new text string that is the decimal representation of the result.
 | |
| There is no division operator at this time.
 | |
| 
 | |
| </p><p>Use the decimal_cmp(A,B) to compare two decimal values.  The result will
 | |
| be negative, zero, or positive if A is less than, equal to, or greater than B,
 | |
| respectively.
 | |
| 
 | |
| </p><p>The decimal_sum(X) function is an aggregate, like the built-in
 | |
| <a href="lang_aggfunc.html#sumunc">sum() aggregate function</a>, except that decimal_sum() computes its result
 | |
| to arbitrary precision and is therefore precise.
 | |
| 
 | |
| </p><p>Finally, the decimal extension provides the "decimal" collating sequences
 | |
| that compares decimal text strings in numeric order.
 | |
| 
 | |
| </p><h1 id="techniques"><span>3. </span>Techniques</h1>
 | |
| 
 | |
| <p>
 | |
| The following SQL illustrates how to use the ieee754 and decimal
 | |
| extensions to compute the exact decimal equivalent
 | |
| for a binary64 floating-point number.
 | |
| 
 | |
| </p><div class="codeblock"><pre>-- The pow2 table will hold all the necessary powers of two.
 | |
| CREATE TABLE pow2(x INTEGER PRIMARY KEY, v TEXT);
 | |
| WITH RECURSIVE c(x,v) AS (
 | |
|   VALUES(0,'1')
 | |
|   UNION ALL
 | |
|   SELECT x+1, decimal_mul(v,'2') FROM c WHERE x+1<=971
 | |
| ) INSERT INTO pow2(x,v) SELECT x, v FROM c;
 | |
| WITH RECURSIVE c(x,v) AS (
 | |
|   VALUES(-1,'0.5')
 | |
|   UNION ALL
 | |
|   SELECT x-1, decimal_mul(v,'0.5') FROM c WHERE x-1>=-1075
 | |
| ) INSERT INTO pow2(x,v) SELECT x, v FROM c;
 | |
| 
 | |
| -- This query finds the decimal representation of each value in the "c" table.
 | |
| WITH c(n) AS (VALUES(47.49))
 | |
|                  ----XXXXX----------- Replace with whatever you want
 | |
| SELECT decimal_mul(ieee754_mantissa(c.n),pow2.v)
 | |
|   FROM pow2, c WHERE pow2.x=ieee754_exponent(c.n);
 | |
| </pre></div>
 | |
| 
 |