4886 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			4886 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
** 2001 September 15
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** The code in this file implements execution method of the 
 | 
						|
** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
 | 
						|
** handles housekeeping details such as creating and deleting
 | 
						|
** VDBE instances.  This file is solely interested in executing
 | 
						|
** the VDBE program.
 | 
						|
**
 | 
						|
** In the external interface, an "sqlite_vm*" is an opaque pointer
 | 
						|
** to a VDBE.
 | 
						|
**
 | 
						|
** The SQL parser generates a program which is then executed by
 | 
						|
** the VDBE to do the work of the SQL statement.  VDBE programs are 
 | 
						|
** similar in form to assembly language.  The program consists of
 | 
						|
** a linear sequence of operations.  Each operation has an opcode 
 | 
						|
** and 3 operands.  Operands P1 and P2 are integers.  Operand P3 
 | 
						|
** is a null-terminated string.   The P2 operand must be non-negative.
 | 
						|
** Opcodes will typically ignore one or more operands.  Many opcodes
 | 
						|
** ignore all three operands.
 | 
						|
**
 | 
						|
** Computation results are stored on a stack.  Each entry on the
 | 
						|
** stack is either an integer, a null-terminated string, a floating point
 | 
						|
** number, or the SQL "NULL" value.  An inplicit conversion from one
 | 
						|
** type to the other occurs as necessary.
 | 
						|
** 
 | 
						|
** Most of the code in this file is taken up by the sqliteVdbeExec()
 | 
						|
** function which does the work of interpreting a VDBE program.
 | 
						|
** But other routines are also provided to help in building up
 | 
						|
** a program instruction by instruction.
 | 
						|
**
 | 
						|
** Various scripts scan this source file in order to generate HTML
 | 
						|
** documentation, headers files, or other derived files.  The formatting
 | 
						|
** of the code in this file is, therefore, important.  See other comments
 | 
						|
** in this file for details.  If in doubt, do not deviate from existing
 | 
						|
** commenting and indentation practices when changing or adding code.
 | 
						|
**
 | 
						|
** $Id: vdbe.c,v 1.1.1.1 2004-03-11 22:22:23 alex Exp $
 | 
						|
*/
 | 
						|
#include "sqliteInt.h"
 | 
						|
#include "os.h"
 | 
						|
#include <ctype.h>
 | 
						|
#include "vdbeInt.h"
 | 
						|
 | 
						|
/*
 | 
						|
** The following global variable is incremented every time a cursor
 | 
						|
** moves, either by the OP_MoveTo or the OP_Next opcode.  The test
 | 
						|
** procedures use this information to make sure that indices are
 | 
						|
** working correctly.  This variable has no function other than to
 | 
						|
** help verify the correct operation of the library.
 | 
						|
*/
 | 
						|
int sqlite_search_count = 0;
 | 
						|
 | 
						|
/*
 | 
						|
** When this global variable is positive, it gets decremented once before
 | 
						|
** each instruction in the VDBE.  When reaches zero, the SQLITE_Interrupt
 | 
						|
** of the db.flags field is set in order to simulate and interrupt.
 | 
						|
**
 | 
						|
** This facility is used for testing purposes only.  It does not function
 | 
						|
** in an ordinary build.
 | 
						|
*/
 | 
						|
int sqlite_interrupt_count = 0;
 | 
						|
 | 
						|
/*
 | 
						|
** Advance the virtual machine to the next output row.
 | 
						|
**
 | 
						|
** The return vale will be either SQLITE_BUSY, SQLITE_DONE, 
 | 
						|
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
 | 
						|
**
 | 
						|
** SQLITE_BUSY means that the virtual machine attempted to open
 | 
						|
** a locked database and there is no busy callback registered.
 | 
						|
** Call sqlite_step() again to retry the open.  *pN is set to 0
 | 
						|
** and *pazColName and *pazValue are both set to NULL.
 | 
						|
**
 | 
						|
** SQLITE_DONE means that the virtual machine has finished
 | 
						|
** executing.  sqlite_step() should not be called again on this
 | 
						|
** virtual machine.  *pN and *pazColName are set appropriately
 | 
						|
** but *pazValue is set to NULL.
 | 
						|
**
 | 
						|
** SQLITE_ROW means that the virtual machine has generated another
 | 
						|
** row of the result set.  *pN is set to the number of columns in
 | 
						|
** the row.  *pazColName is set to the names of the columns followed
 | 
						|
** by the column datatypes.  *pazValue is set to the values of each
 | 
						|
** column in the row.  The value of the i-th column is (*pazValue)[i].
 | 
						|
** The name of the i-th column is (*pazColName)[i] and the datatype
 | 
						|
** of the i-th column is (*pazColName)[i+*pN].
 | 
						|
**
 | 
						|
** SQLITE_ERROR means that a run-time error (such as a constraint
 | 
						|
** violation) has occurred.  The details of the error will be returned
 | 
						|
** by the next call to sqlite_finalize().  sqlite_step() should not
 | 
						|
** be called again on the VM.
 | 
						|
**
 | 
						|
** SQLITE_MISUSE means that the this routine was called inappropriately.
 | 
						|
** Perhaps it was called on a virtual machine that had already been
 | 
						|
** finalized or on one that had previously returned SQLITE_ERROR or
 | 
						|
** SQLITE_DONE.  Or it could be the case the the same database connection
 | 
						|
** is being used simulataneously by two or more threads.
 | 
						|
*/
 | 
						|
int sqlite_step(
 | 
						|
  sqlite_vm *pVm,              /* The virtual machine to execute */
 | 
						|
  int *pN,                     /* OUT: Number of columns in result */
 | 
						|
  const char ***pazValue,      /* OUT: Column data */
 | 
						|
  const char ***pazColName     /* OUT: Column names and datatypes */
 | 
						|
){
 | 
						|
  Vdbe *p = (Vdbe*)pVm;
 | 
						|
  sqlite *db;
 | 
						|
  int rc;
 | 
						|
 | 
						|
  if( p->magic!=VDBE_MAGIC_RUN ){
 | 
						|
    return SQLITE_MISUSE;
 | 
						|
  }
 | 
						|
  db = p->db;
 | 
						|
  if( sqliteSafetyOn(db) ){
 | 
						|
    p->rc = SQLITE_MISUSE;
 | 
						|
    return SQLITE_MISUSE;
 | 
						|
  }
 | 
						|
  if( p->explain ){
 | 
						|
    rc = sqliteVdbeList(p);
 | 
						|
  }else{
 | 
						|
    rc = sqliteVdbeExec(p);
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
 | 
						|
    if( pazColName ) *pazColName = (const char**)p->azColName;
 | 
						|
    if( pN ) *pN = p->nResColumn;
 | 
						|
  }else{
 | 
						|
    if( pazColName) *pazColName = 0;
 | 
						|
    if( pN ) *pN = 0;
 | 
						|
  }
 | 
						|
  if( pazValue ){
 | 
						|
    if( rc==SQLITE_ROW ){
 | 
						|
      *pazValue = (const char**)p->azResColumn;
 | 
						|
    }else{
 | 
						|
      *pazValue = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( sqliteSafetyOff(db) ){
 | 
						|
    return SQLITE_MISUSE;
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Insert a new aggregate element and make it the element that
 | 
						|
** has focus.
 | 
						|
**
 | 
						|
** Return 0 on success and 1 if memory is exhausted.
 | 
						|
*/
 | 
						|
static int AggInsert(Agg *p, char *zKey, int nKey){
 | 
						|
  AggElem *pElem, *pOld;
 | 
						|
  int i;
 | 
						|
  Mem *pMem;
 | 
						|
  pElem = sqliteMalloc( sizeof(AggElem) + nKey +
 | 
						|
                        (p->nMem-1)*sizeof(pElem->aMem[0]) );
 | 
						|
  if( pElem==0 ) return 1;
 | 
						|
  pElem->zKey = (char*)&pElem->aMem[p->nMem];
 | 
						|
  memcpy(pElem->zKey, zKey, nKey);
 | 
						|
  pElem->nKey = nKey;
 | 
						|
  pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
 | 
						|
  if( pOld!=0 ){
 | 
						|
    assert( pOld==pElem );  /* Malloc failed on insert */
 | 
						|
    sqliteFree(pOld);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
 | 
						|
    pMem->flags = MEM_Null;
 | 
						|
  }
 | 
						|
  p->pCurrent = pElem;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Get the AggElem currently in focus
 | 
						|
*/
 | 
						|
#define AggInFocus(P)   ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
 | 
						|
static AggElem *_AggInFocus(Agg *p){
 | 
						|
  HashElem *pElem = sqliteHashFirst(&p->hash);
 | 
						|
  if( pElem==0 ){
 | 
						|
    AggInsert(p,"",1);
 | 
						|
    pElem = sqliteHashFirst(&p->hash);
 | 
						|
  }
 | 
						|
  return pElem ? sqliteHashData(pElem) : 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Convert the given stack entity into a string if it isn't one
 | 
						|
** already.
 | 
						|
*/
 | 
						|
#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
 | 
						|
static int hardStringify(Mem *pStack){
 | 
						|
  int fg = pStack->flags;
 | 
						|
  if( fg & MEM_Real ){
 | 
						|
    sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
 | 
						|
  }else if( fg & MEM_Int ){
 | 
						|
    sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
 | 
						|
  }else{
 | 
						|
    pStack->zShort[0] = 0;
 | 
						|
  }
 | 
						|
  pStack->z = pStack->zShort;
 | 
						|
  pStack->n = strlen(pStack->zShort)+1;
 | 
						|
  pStack->flags = MEM_Str | MEM_Short;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Convert the given stack entity into a string that has been obtained
 | 
						|
** from sqliteMalloc().  This is different from Stringify() above in that
 | 
						|
** Stringify() will use the NBFS bytes of static string space if the string
 | 
						|
** will fit but this routine always mallocs for space.
 | 
						|
** Return non-zero if we run out of memory.
 | 
						|
*/
 | 
						|
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
 | 
						|
static int hardDynamicify(Mem *pStack){
 | 
						|
  int fg = pStack->flags;
 | 
						|
  char *z;
 | 
						|
  if( (fg & MEM_Str)==0 ){
 | 
						|
    hardStringify(pStack);
 | 
						|
  }
 | 
						|
  assert( (fg & MEM_Dyn)==0 );
 | 
						|
  z = sqliteMallocRaw( pStack->n );
 | 
						|
  if( z==0 ) return 1;
 | 
						|
  memcpy(z, pStack->z, pStack->n);
 | 
						|
  pStack->z = z;
 | 
						|
  pStack->flags |= MEM_Dyn;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** An ephemeral string value (signified by the MEM_Ephem flag) contains
 | 
						|
** a pointer to a dynamically allocated string where some other entity
 | 
						|
** is responsible for deallocating that string.  Because the stack entry
 | 
						|
** does not control the string, it might be deleted without the stack
 | 
						|
** entry knowing it.
 | 
						|
**
 | 
						|
** This routine converts an ephemeral string into a dynamically allocated
 | 
						|
** string that the stack entry itself controls.  In other words, it
 | 
						|
** converts an MEM_Ephem string into an MEM_Dyn string.
 | 
						|
*/
 | 
						|
#define Deephemeralize(P) \
 | 
						|
   if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
 | 
						|
static int hardDeephem(Mem *pStack){
 | 
						|
  char *z;
 | 
						|
  assert( (pStack->flags & MEM_Ephem)!=0 );
 | 
						|
  z = sqliteMallocRaw( pStack->n );
 | 
						|
  if( z==0 ) return 1;
 | 
						|
  memcpy(z, pStack->z, pStack->n);
 | 
						|
  pStack->z = z;
 | 
						|
  pStack->flags &= ~MEM_Ephem;
 | 
						|
  pStack->flags |= MEM_Dyn;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Release the memory associated with the given stack level.  This
 | 
						|
** leaves the Mem.flags field in an inconsistent state.
 | 
						|
*/
 | 
						|
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
 | 
						|
 | 
						|
/*
 | 
						|
** Pop the stack N times.
 | 
						|
*/
 | 
						|
static void popStack(Mem **ppTos, int N){
 | 
						|
  Mem *pTos = *ppTos;
 | 
						|
  while( N>0 ){
 | 
						|
    N--;
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
  }
 | 
						|
  *ppTos = pTos;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return TRUE if zNum is a 32-bit signed integer and write
 | 
						|
** the value of the integer into *pNum.  If zNum is not an integer
 | 
						|
** or is an integer that is too large to be expressed with just 32
 | 
						|
** bits, then return false.
 | 
						|
**
 | 
						|
** Under Linux (RedHat 7.2) this routine is much faster than atoi()
 | 
						|
** for converting strings into integers.
 | 
						|
*/
 | 
						|
static int toInt(const char *zNum, int *pNum){
 | 
						|
  int v = 0;
 | 
						|
  int neg;
 | 
						|
  int i, c;
 | 
						|
  if( *zNum=='-' ){
 | 
						|
    neg = 1;
 | 
						|
    zNum++;
 | 
						|
  }else if( *zNum=='+' ){
 | 
						|
    neg = 0;
 | 
						|
    zNum++;
 | 
						|
  }else{
 | 
						|
    neg = 0;
 | 
						|
  }
 | 
						|
  for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
 | 
						|
    v = v*10 + c - '0';
 | 
						|
  }
 | 
						|
  *pNum = neg ? -v : v;
 | 
						|
  return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Convert the given stack entity into a integer if it isn't one
 | 
						|
** already.
 | 
						|
**
 | 
						|
** Any prior string or real representation is invalidated.  
 | 
						|
** NULLs are converted into 0.
 | 
						|
*/
 | 
						|
#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
 | 
						|
static void hardIntegerify(Mem *pStack){
 | 
						|
  if( pStack->flags & MEM_Real ){
 | 
						|
    pStack->i = (int)pStack->r;
 | 
						|
    Release(pStack);
 | 
						|
  }else if( pStack->flags & MEM_Str ){
 | 
						|
    toInt(pStack->z, &pStack->i);
 | 
						|
    Release(pStack);
 | 
						|
  }else{
 | 
						|
    pStack->i = 0;
 | 
						|
  }
 | 
						|
  pStack->flags = MEM_Int;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Get a valid Real representation for the given stack element.
 | 
						|
**
 | 
						|
** Any prior string or integer representation is retained.
 | 
						|
** NULLs are converted into 0.0.
 | 
						|
*/
 | 
						|
#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
 | 
						|
static void hardRealify(Mem *pStack){
 | 
						|
  if( pStack->flags & MEM_Str ){
 | 
						|
    pStack->r = sqliteAtoF(pStack->z, 0);
 | 
						|
  }else if( pStack->flags & MEM_Int ){
 | 
						|
    pStack->r = pStack->i;
 | 
						|
  }else{
 | 
						|
    pStack->r = 0.0;
 | 
						|
  }
 | 
						|
  pStack->flags |= MEM_Real;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The parameters are pointers to the head of two sorted lists
 | 
						|
** of Sorter structures.  Merge these two lists together and return
 | 
						|
** a single sorted list.  This routine forms the core of the merge-sort
 | 
						|
** algorithm.
 | 
						|
**
 | 
						|
** In the case of a tie, left sorts in front of right.
 | 
						|
*/
 | 
						|
static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
 | 
						|
  Sorter sHead;
 | 
						|
  Sorter *pTail;
 | 
						|
  pTail = &sHead;
 | 
						|
  pTail->pNext = 0;
 | 
						|
  while( pLeft && pRight ){
 | 
						|
    int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
 | 
						|
    if( c<=0 ){
 | 
						|
      pTail->pNext = pLeft;
 | 
						|
      pLeft = pLeft->pNext;
 | 
						|
    }else{
 | 
						|
      pTail->pNext = pRight;
 | 
						|
      pRight = pRight->pNext;
 | 
						|
    }
 | 
						|
    pTail = pTail->pNext;
 | 
						|
  }
 | 
						|
  if( pLeft ){
 | 
						|
    pTail->pNext = pLeft;
 | 
						|
  }else if( pRight ){
 | 
						|
    pTail->pNext = pRight;
 | 
						|
  }
 | 
						|
  return sHead.pNext;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The following routine works like a replacement for the standard
 | 
						|
** library routine fgets().  The difference is in how end-of-line (EOL)
 | 
						|
** is handled.  Standard fgets() uses LF for EOL under unix, CRLF
 | 
						|
** under windows, and CR under mac.  This routine accepts any of these
 | 
						|
** character sequences as an EOL mark.  The EOL mark is replaced by
 | 
						|
** a single LF character in zBuf.
 | 
						|
*/
 | 
						|
static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
 | 
						|
  int i, c;
 | 
						|
  for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
 | 
						|
    zBuf[i] = c;
 | 
						|
    if( c=='\r' || c=='\n' ){
 | 
						|
      if( c=='\r' ){
 | 
						|
        zBuf[i] = '\n';
 | 
						|
        c = getc(in);
 | 
						|
        if( c!=EOF && c!='\n' ) ungetc(c, in);
 | 
						|
      }
 | 
						|
      i++;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  zBuf[i]  = 0;
 | 
						|
  return i>0 ? zBuf : 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Make sure there is space in the Vdbe structure to hold at least
 | 
						|
** mxCursor cursors.  If there is not currently enough space, then
 | 
						|
** allocate more.
 | 
						|
**
 | 
						|
** If a memory allocation error occurs, return 1.  Return 0 if
 | 
						|
** everything works.
 | 
						|
*/
 | 
						|
static int expandCursorArraySize(Vdbe *p, int mxCursor){
 | 
						|
  if( mxCursor>=p->nCursor ){
 | 
						|
    Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
 | 
						|
    if( aCsr==0 ) return 1;
 | 
						|
    p->aCsr = aCsr;
 | 
						|
    memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
 | 
						|
    p->nCursor = mxCursor+1;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef VDBE_PROFILE
 | 
						|
/*
 | 
						|
** The following routine only works on pentium-class processors.
 | 
						|
** It uses the RDTSC opcode to read cycle count value out of the
 | 
						|
** processor and returns that value.  This can be used for high-res
 | 
						|
** profiling.
 | 
						|
*/
 | 
						|
__inline__ unsigned long long int hwtime(void){
 | 
						|
  unsigned long long int x;
 | 
						|
  __asm__("rdtsc\n\t"
 | 
						|
          "mov %%edx, %%ecx\n\t"
 | 
						|
          :"=A" (x));
 | 
						|
  return x;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
 | 
						|
** sqlite_interrupt() routine has been called.  If it has been, then
 | 
						|
** processing of the VDBE program is interrupted.
 | 
						|
**
 | 
						|
** This macro added to every instruction that does a jump in order to
 | 
						|
** implement a loop.  This test used to be on every single instruction,
 | 
						|
** but that meant we more testing that we needed.  By only testing the
 | 
						|
** flag on jump instructions, we get a (small) speed improvement.
 | 
						|
*/
 | 
						|
#define CHECK_FOR_INTERRUPT \
 | 
						|
   if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Execute as much of a VDBE program as we can then return.
 | 
						|
**
 | 
						|
** sqliteVdbeMakeReady() must be called before this routine in order to
 | 
						|
** close the program with a final OP_Halt and to set up the callbacks
 | 
						|
** and the error message pointer.
 | 
						|
**
 | 
						|
** Whenever a row or result data is available, this routine will either
 | 
						|
** invoke the result callback (if there is one) or return with
 | 
						|
** SQLITE_ROW.
 | 
						|
**
 | 
						|
** If an attempt is made to open a locked database, then this routine
 | 
						|
** will either invoke the busy callback (if there is one) or it will
 | 
						|
** return SQLITE_BUSY.
 | 
						|
**
 | 
						|
** If an error occurs, an error message is written to memory obtained
 | 
						|
** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
 | 
						|
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
 | 
						|
**
 | 
						|
** If the callback ever returns non-zero, then the program exits
 | 
						|
** immediately.  There will be no error message but the p->rc field is
 | 
						|
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
 | 
						|
**
 | 
						|
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
 | 
						|
** routine to return SQLITE_ERROR.
 | 
						|
**
 | 
						|
** Other fatal errors return SQLITE_ERROR.
 | 
						|
**
 | 
						|
** After this routine has finished, sqliteVdbeFinalize() should be
 | 
						|
** used to clean up the mess that was left behind.
 | 
						|
*/
 | 
						|
int sqliteVdbeExec(
 | 
						|
  Vdbe *p                    /* The VDBE */
 | 
						|
){
 | 
						|
  int pc;                    /* The program counter */
 | 
						|
  Op *pOp;                   /* Current operation */
 | 
						|
  int rc = SQLITE_OK;        /* Value to return */
 | 
						|
  sqlite *db = p->db;        /* The database */
 | 
						|
  Mem *pTos;                 /* Top entry in the operand stack */
 | 
						|
  char zBuf[100];            /* Space to sprintf() an integer */
 | 
						|
#ifdef VDBE_PROFILE
 | 
						|
  unsigned long long start;  /* CPU clock count at start of opcode */
 | 
						|
  int origPc;                /* Program counter at start of opcode */
 | 
						|
#endif
 | 
						|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | 
						|
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
 | 
						|
#endif
 | 
						|
 | 
						|
  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
 | 
						|
  assert( db->magic==SQLITE_MAGIC_BUSY );
 | 
						|
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | 
						|
  p->rc = SQLITE_OK;
 | 
						|
  assert( p->explain==0 );
 | 
						|
  if( sqlite_malloc_failed ) goto no_mem;
 | 
						|
  pTos = p->pTos;
 | 
						|
  if( p->popStack ){
 | 
						|
    popStack(&pTos, p->popStack);
 | 
						|
    p->popStack = 0;
 | 
						|
  }
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  for(pc=p->pc; rc==SQLITE_OK; pc++){
 | 
						|
    assert( pc>=0 && pc<p->nOp );
 | 
						|
    assert( pTos<=&p->aStack[pc] );
 | 
						|
#ifdef VDBE_PROFILE
 | 
						|
    origPc = pc;
 | 
						|
    start = hwtime();
 | 
						|
#endif
 | 
						|
    pOp = &p->aOp[pc];
 | 
						|
 | 
						|
    /* Only allow tracing if NDEBUG is not defined.
 | 
						|
    */
 | 
						|
#ifndef NDEBUG
 | 
						|
    if( p->trace ){
 | 
						|
      sqliteVdbePrintOp(p->trace, pc, pOp);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Check to see if we need to simulate an interrupt.  This only happens
 | 
						|
    ** if we have a special test build.
 | 
						|
    */
 | 
						|
#ifdef SQLITE_TEST
 | 
						|
    if( sqlite_interrupt_count>0 ){
 | 
						|
      sqlite_interrupt_count--;
 | 
						|
      if( sqlite_interrupt_count==0 ){
 | 
						|
        sqlite_interrupt(db);
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | 
						|
    /* Call the progress callback if it is configured and the required number
 | 
						|
    ** of VDBE ops have been executed (either since this invocation of
 | 
						|
    ** sqliteVdbeExec() or since last time the progress callback was called).
 | 
						|
    ** If the progress callback returns non-zero, exit the virtual machine with
 | 
						|
    ** a return code SQLITE_ABORT.
 | 
						|
    */
 | 
						|
    if( db->xProgress ){
 | 
						|
      if( db->nProgressOps==nProgressOps ){
 | 
						|
        if( db->xProgress(db->pProgressArg)!=0 ){
 | 
						|
          rc = SQLITE_ABORT;
 | 
						|
          continue; /* skip to the next iteration of the for loop */
 | 
						|
        }
 | 
						|
        nProgressOps = 0;
 | 
						|
      }
 | 
						|
      nProgressOps++;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    switch( pOp->opcode ){
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
** What follows is a massive switch statement where each case implements a
 | 
						|
** separate instruction in the virtual machine.  If we follow the usual
 | 
						|
** indentation conventions, each case should be indented by 6 spaces.  But
 | 
						|
** that is a lot of wasted space on the left margin.  So the code within
 | 
						|
** the switch statement will break with convention and be flush-left. Another
 | 
						|
** big comment (similar to this one) will mark the point in the code where
 | 
						|
** we transition back to normal indentation.
 | 
						|
**
 | 
						|
** The formatting of each case is important.  The makefile for SQLite
 | 
						|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
 | 
						|
** file looking for lines that begin with "case OP_".  The opcodes.h files
 | 
						|
** will be filled with #defines that give unique integer values to each
 | 
						|
** opcode and the opcodes.c file is filled with an array of strings where
 | 
						|
** each string is the symbolic name for the corresponding opcode.
 | 
						|
**
 | 
						|
** Documentation about VDBE opcodes is generated by scanning this file
 | 
						|
** for lines of that contain "Opcode:".  That line and all subsequent
 | 
						|
** comment lines are used in the generation of the opcode.html documentation
 | 
						|
** file.
 | 
						|
**
 | 
						|
** SUMMARY:
 | 
						|
**
 | 
						|
**     Formatting is important to scripts that scan this file.
 | 
						|
**     Do not deviate from the formatting style currently in use.
 | 
						|
**
 | 
						|
*****************************************************************************/
 | 
						|
 | 
						|
/* Opcode:  Goto * P2 *
 | 
						|
**
 | 
						|
** An unconditional jump to address P2.
 | 
						|
** The next instruction executed will be 
 | 
						|
** the one at index P2 from the beginning of
 | 
						|
** the program.
 | 
						|
*/
 | 
						|
case OP_Goto: {
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  pc = pOp->p2 - 1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode:  Gosub * P2 *
 | 
						|
**
 | 
						|
** Push the current address plus 1 onto the return address stack
 | 
						|
** and then jump to address P2.
 | 
						|
**
 | 
						|
** The return address stack is of limited depth.  If too many
 | 
						|
** OP_Gosub operations occur without intervening OP_Returns, then
 | 
						|
** the return address stack will fill up and processing will abort
 | 
						|
** with a fatal error.
 | 
						|
*/
 | 
						|
case OP_Gosub: {
 | 
						|
  if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
 | 
						|
    sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
 | 
						|
    p->rc = SQLITE_INTERNAL;
 | 
						|
    return SQLITE_ERROR;
 | 
						|
  }
 | 
						|
  p->returnStack[p->returnDepth++] = pc+1;
 | 
						|
  pc = pOp->p2 - 1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode:  Return * * *
 | 
						|
**
 | 
						|
** Jump immediately to the next instruction after the last unreturned
 | 
						|
** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
 | 
						|
** processing aborts with a fatal error.
 | 
						|
*/
 | 
						|
case OP_Return: {
 | 
						|
  if( p->returnDepth<=0 ){
 | 
						|
    sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
 | 
						|
    p->rc = SQLITE_INTERNAL;
 | 
						|
    return SQLITE_ERROR;
 | 
						|
  }
 | 
						|
  p->returnDepth--;
 | 
						|
  pc = p->returnStack[p->returnDepth] - 1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode:  Halt P1 P2 *
 | 
						|
**
 | 
						|
** Exit immediately.  All open cursors, Lists, Sorts, etc are closed
 | 
						|
** automatically.
 | 
						|
**
 | 
						|
** P1 is the result code returned by sqlite_exec().  For a normal
 | 
						|
** halt, this should be SQLITE_OK (0).  For errors, it can be some
 | 
						|
** other value.  If P1!=0 then P2 will determine whether or not to
 | 
						|
** rollback the current transaction.  Do not rollback if P2==OE_Fail.
 | 
						|
** Do the rollback if P2==OE_Rollback.  If P2==OE_Abort, then back
 | 
						|
** out all changes that have occurred during this execution of the
 | 
						|
** VDBE, but do not rollback the transaction. 
 | 
						|
**
 | 
						|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
 | 
						|
** every program.  So a jump past the last instruction of the program
 | 
						|
** is the same as executing Halt.
 | 
						|
*/
 | 
						|
case OP_Halt: {
 | 
						|
  p->magic = VDBE_MAGIC_HALT;
 | 
						|
  p->pTos = pTos;
 | 
						|
  if( pOp->p1!=SQLITE_OK ){
 | 
						|
    p->rc = pOp->p1;
 | 
						|
    p->errorAction = pOp->p2;
 | 
						|
    if( pOp->p3 ){
 | 
						|
      sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
 | 
						|
    }
 | 
						|
    return SQLITE_ERROR;
 | 
						|
  }else{
 | 
						|
    p->rc = SQLITE_OK;
 | 
						|
    return SQLITE_DONE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Integer P1 * P3
 | 
						|
**
 | 
						|
** The integer value P1 is pushed onto the stack.  If P3 is not zero
 | 
						|
** then it is assumed to be a string representation of the same integer.
 | 
						|
*/
 | 
						|
case OP_Integer: {
 | 
						|
  pTos++;
 | 
						|
  pTos->i = pOp->p1;
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  if( pOp->p3 ){
 | 
						|
    pTos->z = pOp->p3;
 | 
						|
    pTos->flags |= MEM_Str | MEM_Static;
 | 
						|
    pTos->n = strlen(pOp->p3)+1;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: String * * P3
 | 
						|
**
 | 
						|
** The string value P3 is pushed onto the stack.  If P3==0 then a
 | 
						|
** NULL is pushed onto the stack.
 | 
						|
*/
 | 
						|
case OP_String: {
 | 
						|
  char *z = pOp->p3;
 | 
						|
  pTos++;
 | 
						|
  if( z==0 ){
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }else{
 | 
						|
    pTos->z = z;
 | 
						|
    pTos->n = strlen(z) + 1;
 | 
						|
    pTos->flags = MEM_Str | MEM_Static;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Variable P1 * *
 | 
						|
**
 | 
						|
** Push the value of variable P1 onto the stack.  A variable is
 | 
						|
** an unknown in the original SQL string as handed to sqlite_compile().
 | 
						|
** Any occurance of the '?' character in the original SQL is considered
 | 
						|
** a variable.  Variables in the SQL string are number from left to
 | 
						|
** right beginning with 1.  The values of variables are set using the
 | 
						|
** sqlite_bind() API.
 | 
						|
*/
 | 
						|
case OP_Variable: {
 | 
						|
  int j = pOp->p1 - 1;
 | 
						|
  pTos++;
 | 
						|
  if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
 | 
						|
    pTos->z = p->azVar[j];
 | 
						|
    pTos->n = p->anVar[j];
 | 
						|
    pTos->flags = MEM_Str | MEM_Static;
 | 
						|
  }else{
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Pop P1 * *
 | 
						|
**
 | 
						|
** P1 elements are popped off of the top of stack and discarded.
 | 
						|
*/
 | 
						|
case OP_Pop: {
 | 
						|
  assert( pOp->p1>=0 );
 | 
						|
  popStack(&pTos, pOp->p1);
 | 
						|
  assert( pTos>=&p->aStack[-1] );
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Dup P1 P2 *
 | 
						|
**
 | 
						|
** A copy of the P1-th element of the stack 
 | 
						|
** is made and pushed onto the top of the stack.
 | 
						|
** The top of the stack is element 0.  So the
 | 
						|
** instruction "Dup 0 0 0" will make a copy of the
 | 
						|
** top of the stack.
 | 
						|
**
 | 
						|
** If the content of the P1-th element is a dynamically
 | 
						|
** allocated string, then a new copy of that string
 | 
						|
** is made if P2==0.  If P2!=0, then just a pointer
 | 
						|
** to the string is copied.
 | 
						|
**
 | 
						|
** Also see the Pull instruction.
 | 
						|
*/
 | 
						|
case OP_Dup: {
 | 
						|
  Mem *pFrom = &pTos[-pOp->p1];
 | 
						|
  assert( pFrom<=pTos && pFrom>=p->aStack );
 | 
						|
  pTos++;
 | 
						|
  memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
 | 
						|
  if( pTos->flags & MEM_Str ){
 | 
						|
    if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
 | 
						|
      pTos->flags &= ~MEM_Dyn;
 | 
						|
      pTos->flags |= MEM_Ephem;
 | 
						|
    }else if( pTos->flags & MEM_Short ){
 | 
						|
      memcpy(pTos->zShort, pFrom->zShort, pTos->n);
 | 
						|
      pTos->z = pTos->zShort;
 | 
						|
    }else if( (pTos->flags & MEM_Static)==0 ){
 | 
						|
      pTos->z = sqliteMallocRaw(pFrom->n);
 | 
						|
      if( sqlite_malloc_failed ) goto no_mem;
 | 
						|
      memcpy(pTos->z, pFrom->z, pFrom->n);
 | 
						|
      pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
 | 
						|
      pTos->flags |= MEM_Dyn;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Pull P1 * *
 | 
						|
**
 | 
						|
** The P1-th element is removed from its current location on 
 | 
						|
** the stack and pushed back on top of the stack.  The
 | 
						|
** top of the stack is element 0, so "Pull 0 0 0" is
 | 
						|
** a no-op.  "Pull 1 0 0" swaps the top two elements of
 | 
						|
** the stack.
 | 
						|
**
 | 
						|
** See also the Dup instruction.
 | 
						|
*/
 | 
						|
case OP_Pull: {
 | 
						|
  Mem *pFrom = &pTos[-pOp->p1];
 | 
						|
  int i;
 | 
						|
  Mem ts;
 | 
						|
 | 
						|
  ts = *pFrom;
 | 
						|
  Deephemeralize(pTos);
 | 
						|
  for(i=0; i<pOp->p1; i++, pFrom++){
 | 
						|
    Deephemeralize(&pFrom[1]);
 | 
						|
    *pFrom = pFrom[1];
 | 
						|
    assert( (pFrom->flags & MEM_Ephem)==0 );
 | 
						|
    if( pFrom->flags & MEM_Short ){
 | 
						|
      assert( pFrom->flags & MEM_Str );
 | 
						|
      assert( pFrom->z==pFrom[1].zShort );
 | 
						|
      pFrom->z = pFrom->zShort;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  *pTos = ts;
 | 
						|
  if( pTos->flags & MEM_Short ){
 | 
						|
    assert( pTos->flags & MEM_Str );
 | 
						|
    assert( pTos->z==pTos[-pOp->p1].zShort );
 | 
						|
    pTos->z = pTos->zShort;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Push P1 * *
 | 
						|
**
 | 
						|
** Overwrite the value of the P1-th element down on the
 | 
						|
** stack (P1==0 is the top of the stack) with the value
 | 
						|
** of the top of the stack.  Then pop the top of the stack.
 | 
						|
*/
 | 
						|
case OP_Push: {
 | 
						|
  Mem *pTo = &pTos[-pOp->p1];
 | 
						|
 | 
						|
  assert( pTo>=p->aStack );
 | 
						|
  Deephemeralize(pTos);
 | 
						|
  Release(pTo);
 | 
						|
  *pTo = *pTos;
 | 
						|
  if( pTo->flags & MEM_Short ){
 | 
						|
    assert( pTo->z==pTos->zShort );
 | 
						|
    pTo->z = pTo->zShort;
 | 
						|
  }
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Opcode: ColumnName P1 P2 P3
 | 
						|
**
 | 
						|
** P3 becomes the P1-th column name (first is 0).  An array of pointers
 | 
						|
** to all column names is passed as the 4th parameter to the callback.
 | 
						|
** If P2==1 then this is the last column in the result set and thus the
 | 
						|
** number of columns in the result set will be P1.  There must be at least
 | 
						|
** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
 | 
						|
** number of columns specified in OP_Callback must one more than the P1
 | 
						|
** value of the OP_ColumnName that has P2==1.
 | 
						|
*/
 | 
						|
case OP_ColumnName: {
 | 
						|
  assert( pOp->p1>=0 && pOp->p1<p->nOp );
 | 
						|
  p->azColName[pOp->p1] = pOp->p3;
 | 
						|
  p->nCallback = 0;
 | 
						|
  if( pOp->p2 ) p->nResColumn = pOp->p1+1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Callback P1 * *
 | 
						|
**
 | 
						|
** Pop P1 values off the stack and form them into an array.  Then
 | 
						|
** invoke the callback function using the newly formed array as the
 | 
						|
** 3rd parameter.
 | 
						|
*/
 | 
						|
case OP_Callback: {
 | 
						|
  int i;
 | 
						|
  char **azArgv = p->zArgv;
 | 
						|
  Mem *pCol;
 | 
						|
 | 
						|
  pCol = &pTos[1-pOp->p1];
 | 
						|
  assert( pCol>=p->aStack );
 | 
						|
  for(i=0; i<pOp->p1; i++, pCol++){
 | 
						|
    if( pCol->flags & MEM_Null ){
 | 
						|
      azArgv[i] = 0;
 | 
						|
    }else{
 | 
						|
      Stringify(pCol);
 | 
						|
      azArgv[i] = pCol->z;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  azArgv[i] = 0;
 | 
						|
  p->nCallback++;
 | 
						|
  p->azResColumn = azArgv;
 | 
						|
  assert( p->nResColumn==pOp->p1 );
 | 
						|
  p->popStack = pOp->p1;
 | 
						|
  p->pc = pc + 1;
 | 
						|
  p->pTos = pTos;
 | 
						|
  return SQLITE_ROW;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Concat P1 P2 P3
 | 
						|
**
 | 
						|
** Look at the first P1 elements of the stack.  Append them all 
 | 
						|
** together with the lowest element first.  Use P3 as a separator.  
 | 
						|
** Put the result on the top of the stack.  The original P1 elements
 | 
						|
** are popped from the stack if P2==0 and retained if P2==1.  If
 | 
						|
** any element of the stack is NULL, then the result is NULL.
 | 
						|
**
 | 
						|
** If P3 is NULL, then use no separator.  When P1==1, this routine
 | 
						|
** makes a copy of the top stack element into memory obtained
 | 
						|
** from sqliteMalloc().
 | 
						|
*/
 | 
						|
case OP_Concat: {
 | 
						|
  char *zNew;
 | 
						|
  int nByte;
 | 
						|
  int nField;
 | 
						|
  int i, j;
 | 
						|
  char *zSep;
 | 
						|
  int nSep;
 | 
						|
  Mem *pTerm;
 | 
						|
 | 
						|
  nField = pOp->p1;
 | 
						|
  zSep = pOp->p3;
 | 
						|
  if( zSep==0 ) zSep = "";
 | 
						|
  nSep = strlen(zSep);
 | 
						|
  assert( &pTos[1-nField] >= p->aStack );
 | 
						|
  nByte = 1 - nSep;
 | 
						|
  pTerm = &pTos[1-nField];
 | 
						|
  for(i=0; i<nField; i++, pTerm++){
 | 
						|
    if( pTerm->flags & MEM_Null ){
 | 
						|
      nByte = -1;
 | 
						|
      break;
 | 
						|
    }else{
 | 
						|
      Stringify(pTerm);
 | 
						|
      nByte += pTerm->n - 1 + nSep;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( nByte<0 ){
 | 
						|
    if( pOp->p2==0 ){
 | 
						|
      popStack(&pTos, nField);
 | 
						|
    }
 | 
						|
    pTos++;
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  zNew = sqliteMallocRaw( nByte );
 | 
						|
  if( zNew==0 ) goto no_mem;
 | 
						|
  j = 0;
 | 
						|
  pTerm = &pTos[1-nField];
 | 
						|
  for(i=j=0; i<nField; i++, pTerm++){
 | 
						|
    assert( pTerm->flags & MEM_Str );
 | 
						|
    memcpy(&zNew[j], pTerm->z, pTerm->n-1);
 | 
						|
    j += pTerm->n-1;
 | 
						|
    if( nSep>0 && i<nField-1 ){
 | 
						|
      memcpy(&zNew[j], zSep, nSep);
 | 
						|
      j += nSep;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  zNew[j] = 0;
 | 
						|
  if( pOp->p2==0 ){
 | 
						|
    popStack(&pTos, nField);
 | 
						|
  }
 | 
						|
  pTos++;
 | 
						|
  pTos->n = nByte;
 | 
						|
  pTos->flags = MEM_Str|MEM_Dyn;
 | 
						|
  pTos->z = zNew;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Add * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack, add them together,
 | 
						|
** and push the result back onto the stack.  If either element
 | 
						|
** is a string then it is converted to a double using the atof()
 | 
						|
** function before the addition.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Multiply * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack, multiply them together,
 | 
						|
** and push the result back onto the stack.  If either element
 | 
						|
** is a string then it is converted to a double using the atof()
 | 
						|
** function before the multiplication.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Subtract * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack, subtract the
 | 
						|
** first (what was on top of the stack) from the second (the
 | 
						|
** next on stack)
 | 
						|
** and push the result back onto the stack.  If either element
 | 
						|
** is a string then it is converted to a double using the atof()
 | 
						|
** function before the subtraction.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Divide * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack, divide the
 | 
						|
** first (what was on top of the stack) from the second (the
 | 
						|
** next on stack)
 | 
						|
** and push the result back onto the stack.  If either element
 | 
						|
** is a string then it is converted to a double using the atof()
 | 
						|
** function before the division.  Division by zero returns NULL.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Remainder * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack, divide the
 | 
						|
** first (what was on top of the stack) from the second (the
 | 
						|
** next on stack)
 | 
						|
** and push the remainder after division onto the stack.  If either element
 | 
						|
** is a string then it is converted to a double using the atof()
 | 
						|
** function before the division.  Division by zero returns NULL.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
case OP_Add:
 | 
						|
case OP_Subtract:
 | 
						|
case OP_Multiply:
 | 
						|
case OP_Divide:
 | 
						|
case OP_Remainder: {
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
    Release(pTos);
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
 | 
						|
    int a, b;
 | 
						|
    a = pTos->i;
 | 
						|
    b = pNos->i;
 | 
						|
    switch( pOp->opcode ){
 | 
						|
      case OP_Add:         b += a;       break;
 | 
						|
      case OP_Subtract:    b -= a;       break;
 | 
						|
      case OP_Multiply:    b *= a;       break;
 | 
						|
      case OP_Divide: {
 | 
						|
        if( a==0 ) goto divide_by_zero;
 | 
						|
        b /= a;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      default: {
 | 
						|
        if( a==0 ) goto divide_by_zero;
 | 
						|
        b %= a;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
    Release(pTos);
 | 
						|
    pTos->i = b;
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
  }else{
 | 
						|
    double a, b;
 | 
						|
    Realify(pTos);
 | 
						|
    Realify(pNos);
 | 
						|
    a = pTos->r;
 | 
						|
    b = pNos->r;
 | 
						|
    switch( pOp->opcode ){
 | 
						|
      case OP_Add:         b += a;       break;
 | 
						|
      case OP_Subtract:    b -= a;       break;
 | 
						|
      case OP_Multiply:    b *= a;       break;
 | 
						|
      case OP_Divide: {
 | 
						|
        if( a==0.0 ) goto divide_by_zero;
 | 
						|
        b /= a;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      default: {
 | 
						|
        int ia = (int)a;
 | 
						|
        int ib = (int)b;
 | 
						|
        if( ia==0.0 ) goto divide_by_zero;
 | 
						|
        b = ib % ia;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
    Release(pTos);
 | 
						|
    pTos->r = b;
 | 
						|
    pTos->flags = MEM_Real;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
 | 
						|
divide_by_zero:
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  Release(pTos);
 | 
						|
  pTos->flags = MEM_Null;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Function P1 * P3
 | 
						|
**
 | 
						|
** Invoke a user function (P3 is a pointer to a Function structure that
 | 
						|
** defines the function) with P1 string arguments taken from the stack.
 | 
						|
** Pop all arguments from the stack and push back the result.
 | 
						|
**
 | 
						|
** See also: AggFunc
 | 
						|
*/
 | 
						|
case OP_Function: {
 | 
						|
  int n, i;
 | 
						|
  Mem *pArg;
 | 
						|
  char **azArgv;
 | 
						|
  sqlite_func ctx;
 | 
						|
 | 
						|
  n = pOp->p1;
 | 
						|
  pArg = &pTos[1-n];
 | 
						|
  azArgv = p->zArgv;
 | 
						|
  for(i=0; i<n; i++, pArg++){
 | 
						|
    if( pArg->flags & MEM_Null ){
 | 
						|
      azArgv[i] = 0;
 | 
						|
    }else{
 | 
						|
      Stringify(pArg);
 | 
						|
      azArgv[i] = pArg->z;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ctx.pFunc = (FuncDef*)pOp->p3;
 | 
						|
  ctx.s.flags = MEM_Null;
 | 
						|
  ctx.s.z = 0;
 | 
						|
  ctx.isError = 0;
 | 
						|
  ctx.isStep = 0;
 | 
						|
  if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
 | 
						|
  (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
 | 
						|
  if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
 | 
						|
  popStack(&pTos, n);
 | 
						|
  pTos++;
 | 
						|
  *pTos = ctx.s;
 | 
						|
  if( pTos->flags & MEM_Short ){
 | 
						|
    pTos->z = pTos->zShort;
 | 
						|
  }
 | 
						|
  if( ctx.isError ){
 | 
						|
    sqliteSetString(&p->zErrMsg, 
 | 
						|
       (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
 | 
						|
    rc = SQLITE_ERROR;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: BitAnd * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  Convert both elements
 | 
						|
** to integers.  Push back onto the stack the bit-wise AND of the
 | 
						|
** two elements.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
/* Opcode: BitOr * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  Convert both elements
 | 
						|
** to integers.  Push back onto the stack the bit-wise OR of the
 | 
						|
** two elements.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
/* Opcode: ShiftLeft * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  Convert both elements
 | 
						|
** to integers.  Push back onto the stack the top element shifted
 | 
						|
** left by N bits where N is the second element on the stack.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
/* Opcode: ShiftRight * * *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  Convert both elements
 | 
						|
** to integers.  Push back onto the stack the top element shifted
 | 
						|
** right by N bits where N is the second element on the stack.
 | 
						|
** If either operand is NULL, the result is NULL.
 | 
						|
*/
 | 
						|
case OP_BitAnd:
 | 
						|
case OP_BitOr:
 | 
						|
case OP_ShiftLeft:
 | 
						|
case OP_ShiftRight: {
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  int a, b;
 | 
						|
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  if( (pTos->flags | pNos->flags) & MEM_Null ){
 | 
						|
    popStack(&pTos, 2);
 | 
						|
    pTos++;
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  Integerify(pTos);
 | 
						|
  Integerify(pNos);
 | 
						|
  a = pTos->i;
 | 
						|
  b = pNos->i;
 | 
						|
  switch( pOp->opcode ){
 | 
						|
    case OP_BitAnd:      a &= b;     break;
 | 
						|
    case OP_BitOr:       a |= b;     break;
 | 
						|
    case OP_ShiftLeft:   a <<= b;    break;
 | 
						|
    case OP_ShiftRight:  a >>= b;    break;
 | 
						|
    default:   /* CANT HAPPEN */     break;
 | 
						|
  }
 | 
						|
  assert( (pTos->flags & MEM_Dyn)==0 );
 | 
						|
  assert( (pNos->flags & MEM_Dyn)==0 );
 | 
						|
  pTos--;
 | 
						|
  Release(pTos);
 | 
						|
  pTos->i = a;
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AddImm  P1 * *
 | 
						|
** 
 | 
						|
** Add the value P1 to whatever is on top of the stack.  The result
 | 
						|
** is always an integer.
 | 
						|
**
 | 
						|
** To force the top of the stack to be an integer, just add 0.
 | 
						|
*/
 | 
						|
case OP_AddImm: {
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  Integerify(pTos);
 | 
						|
  pTos->i += pOp->p1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ForceInt P1 P2 *
 | 
						|
**
 | 
						|
** Convert the top of the stack into an integer.  If the current top of
 | 
						|
** the stack is not numeric (meaning that is is a NULL or a string that
 | 
						|
** does not look like an integer or floating point number) then pop the
 | 
						|
** stack and jump to P2.  If the top of the stack is numeric then
 | 
						|
** convert it into the least integer that is greater than or equal to its
 | 
						|
** current value if P1==0, or to the least integer that is strictly
 | 
						|
** greater than its current value if P1==1.
 | 
						|
*/
 | 
						|
case OP_ForceInt: {
 | 
						|
  int v;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( (pTos->flags & (MEM_Int|MEM_Real))==0
 | 
						|
         && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if( pTos->flags & MEM_Int ){
 | 
						|
    v = pTos->i + (pOp->p1!=0);
 | 
						|
  }else{
 | 
						|
    Realify(pTos);
 | 
						|
    v = (int)pTos->r;
 | 
						|
    if( pTos->r>(double)v ) v++;
 | 
						|
    if( pOp->p1 && pTos->r==(double)v ) v++;
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos->i = v;
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: MustBeInt P1 P2 *
 | 
						|
** 
 | 
						|
** Force the top of the stack to be an integer.  If the top of the
 | 
						|
** stack is not an integer and cannot be converted into an integer
 | 
						|
** with out data loss, then jump immediately to P2, or if P2==0
 | 
						|
** raise an SQLITE_MISMATCH exception.
 | 
						|
**
 | 
						|
** If the top of the stack is not an integer and P2 is not zero and
 | 
						|
** P1 is 1, then the stack is popped.  In all other cases, the depth
 | 
						|
** of the stack is unchanged.
 | 
						|
*/
 | 
						|
case OP_MustBeInt: {
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( pTos->flags & MEM_Int ){
 | 
						|
    /* Do nothing */
 | 
						|
  }else if( pTos->flags & MEM_Real ){
 | 
						|
    int i = (int)pTos->r;
 | 
						|
    double r = (double)i;
 | 
						|
    if( r!=pTos->r ){
 | 
						|
      goto mismatch;
 | 
						|
    }
 | 
						|
    pTos->i = i;
 | 
						|
  }else if( pTos->flags & MEM_Str ){
 | 
						|
    int v;
 | 
						|
    if( !toInt(pTos->z, &v) ){
 | 
						|
      double r;
 | 
						|
      if( !sqliteIsNumber(pTos->z) ){
 | 
						|
        goto mismatch;
 | 
						|
      }
 | 
						|
      Realify(pTos);
 | 
						|
      v = (int)pTos->r;
 | 
						|
      r = (double)v;
 | 
						|
      if( r!=pTos->r ){
 | 
						|
        goto mismatch;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    pTos->i = v;
 | 
						|
  }else{
 | 
						|
    goto mismatch;
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
 | 
						|
mismatch:
 | 
						|
  if( pOp->p2==0 ){
 | 
						|
    rc = SQLITE_MISMATCH;
 | 
						|
    goto abort_due_to_error;
 | 
						|
  }else{
 | 
						|
    if( pOp->p1 ) popStack(&pTos, 1);
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Eq P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If they are equal, then
 | 
						|
** jump to instruction P2.  Otherwise, continue to the next instruction.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** If both values are numeric, they are converted to doubles using atof()
 | 
						|
** and compared for equality that way.  Otherwise the strcmp() library
 | 
						|
** routine is used for the comparison.  For a pure text comparison
 | 
						|
** use OP_StrEq.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Ne P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If they are not equal, then
 | 
						|
** jump to instruction P2.  Otherwise, continue to the next instruction.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** If both values are numeric, they are converted to doubles using atof()
 | 
						|
** and compared in that format.  Otherwise the strcmp() library
 | 
						|
** routine is used for the comparison.  For a pure text comparison
 | 
						|
** use OP_StrNe.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Lt P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the
 | 
						|
** next on stack) is less than the first (the top of stack), then
 | 
						|
** jump to instruction P2.  Otherwise, continue to the next instruction.
 | 
						|
** In other words, jump if NOS<TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** If both values are numeric, they are converted to doubles using atof()
 | 
						|
** and compared in that format.  Numeric values are always less than
 | 
						|
** non-numeric values.  If both operands are non-numeric, the strcmp() library
 | 
						|
** routine is used for the comparison.  For a pure text comparison
 | 
						|
** use OP_StrLt.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Le P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the
 | 
						|
** next on stack) is less than or equal to the first (the top of stack),
 | 
						|
** then jump to instruction P2. In other words, jump if NOS<=TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** If both values are numeric, they are converted to doubles using atof()
 | 
						|
** and compared in that format.  Numeric values are always less than
 | 
						|
** non-numeric values.  If both operands are non-numeric, the strcmp() library
 | 
						|
** routine is used for the comparison.  For a pure text comparison
 | 
						|
** use OP_StrLe.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Gt P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the
 | 
						|
** next on stack) is greater than the first (the top of stack),
 | 
						|
** then jump to instruction P2. In other words, jump if NOS>TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** If both values are numeric, they are converted to doubles using atof()
 | 
						|
** and compared in that format.  Numeric values are always less than
 | 
						|
** non-numeric values.  If both operands are non-numeric, the strcmp() library
 | 
						|
** routine is used for the comparison.  For a pure text comparison
 | 
						|
** use OP_StrGt.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: Ge P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the next
 | 
						|
** on stack) is greater than or equal to the first (the top of stack),
 | 
						|
** then jump to instruction P2. In other words, jump if NOS>=TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** If both values are numeric, they are converted to doubles using atof()
 | 
						|
** and compared in that format.  Numeric values are always less than
 | 
						|
** non-numeric values.  If both operands are non-numeric, the strcmp() library
 | 
						|
** routine is used for the comparison.  For a pure text comparison
 | 
						|
** use OP_StrGe.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
case OP_Eq:
 | 
						|
case OP_Ne:
 | 
						|
case OP_Lt:
 | 
						|
case OP_Le:
 | 
						|
case OP_Gt:
 | 
						|
case OP_Ge: {
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  int c, v;
 | 
						|
  int ft, fn;
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  ft = pTos->flags;
 | 
						|
  fn = pNos->flags;
 | 
						|
  if( (ft | fn) & MEM_Null ){
 | 
						|
    popStack(&pTos, 2);
 | 
						|
    if( pOp->p2 ){
 | 
						|
      if( pOp->p1 ) pc = pOp->p2-1;
 | 
						|
    }else{
 | 
						|
      pTos++;
 | 
						|
      pTos->flags = MEM_Null;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }else if( (ft & fn & MEM_Int)==MEM_Int ){
 | 
						|
    c = pNos->i - pTos->i;
 | 
						|
  }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
 | 
						|
    c = v - pTos->i;
 | 
						|
  }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
 | 
						|
    c = pNos->i - v;
 | 
						|
  }else{
 | 
						|
    Stringify(pTos);
 | 
						|
    Stringify(pNos);
 | 
						|
    c = sqliteCompare(pNos->z, pTos->z);
 | 
						|
  }
 | 
						|
  switch( pOp->opcode ){
 | 
						|
    case OP_Eq:    c = c==0;     break;
 | 
						|
    case OP_Ne:    c = c!=0;     break;
 | 
						|
    case OP_Lt:    c = c<0;      break;
 | 
						|
    case OP_Le:    c = c<=0;     break;
 | 
						|
    case OP_Gt:    c = c>0;      break;
 | 
						|
    default:       c = c>=0;     break;
 | 
						|
  }
 | 
						|
  popStack(&pTos, 2);
 | 
						|
  if( pOp->p2 ){
 | 
						|
    if( c ) pc = pOp->p2-1;
 | 
						|
  }else{
 | 
						|
    pTos++;
 | 
						|
    pTos->i = c;
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
/* INSERT NO CODE HERE!
 | 
						|
**
 | 
						|
** The opcode numbers are extracted from this source file by doing
 | 
						|
**
 | 
						|
**    grep '^case OP_' vdbe.c | ... >opcodes.h
 | 
						|
**
 | 
						|
** The opcodes are numbered in the order that they appear in this file.
 | 
						|
** But in order for the expression generating code to work right, the
 | 
						|
** string comparison operators that follow must be numbered exactly 6
 | 
						|
** greater than the numeric comparison opcodes above.  So no other
 | 
						|
** cases can appear between the two.
 | 
						|
*/
 | 
						|
/* Opcode: StrEq P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If they are equal, then
 | 
						|
** jump to instruction P2.  Otherwise, continue to the next instruction.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** The strcmp() library routine is used for the comparison.  For a
 | 
						|
** numeric comparison, use OP_Eq.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: StrNe P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If they are not equal, then
 | 
						|
** jump to instruction P2.  Otherwise, continue to the next instruction.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** The strcmp() library routine is used for the comparison.  For a
 | 
						|
** numeric comparison, use OP_Ne.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: StrLt P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the
 | 
						|
** next on stack) is less than the first (the top of stack), then
 | 
						|
** jump to instruction P2.  Otherwise, continue to the next instruction.
 | 
						|
** In other words, jump if NOS<TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** The strcmp() library routine is used for the comparison.  For a
 | 
						|
** numeric comparison, use OP_Lt.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: StrLe P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the
 | 
						|
** next on stack) is less than or equal to the first (the top of stack),
 | 
						|
** then jump to instruction P2. In other words, jump if NOS<=TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** The strcmp() library routine is used for the comparison.  For a
 | 
						|
** numeric comparison, use OP_Le.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: StrGt P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the
 | 
						|
** next on stack) is greater than the first (the top of stack),
 | 
						|
** then jump to instruction P2. In other words, jump if NOS>TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** The strcmp() library routine is used for the comparison.  For a
 | 
						|
** numeric comparison, use OP_Gt.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
/* Opcode: StrGe P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top two elements from the stack.  If second element (the next
 | 
						|
** on stack) is greater than or equal to the first (the top of stack),
 | 
						|
** then jump to instruction P2. In other words, jump if NOS>=TOS.
 | 
						|
**
 | 
						|
** If either operand is NULL (and thus if the result is unknown) then
 | 
						|
** take the jump if P1 is true.
 | 
						|
**
 | 
						|
** The strcmp() library routine is used for the comparison.  For a
 | 
						|
** numeric comparison, use OP_Ge.
 | 
						|
**
 | 
						|
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | 
						|
** stack if the jump would have been taken, or a 0 if not.  Push a
 | 
						|
** NULL if either operand was NULL.
 | 
						|
*/
 | 
						|
case OP_StrEq:
 | 
						|
case OP_StrNe:
 | 
						|
case OP_StrLt:
 | 
						|
case OP_StrLe:
 | 
						|
case OP_StrGt:
 | 
						|
case OP_StrGe: {
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  int c;
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  if( (pNos->flags | pTos->flags) & MEM_Null ){
 | 
						|
    popStack(&pTos, 2);
 | 
						|
    if( pOp->p2 ){
 | 
						|
      if( pOp->p1 ) pc = pOp->p2-1;
 | 
						|
    }else{
 | 
						|
      pTos++;
 | 
						|
      pTos->flags = MEM_Null;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }else{
 | 
						|
    Stringify(pTos);
 | 
						|
    Stringify(pNos);
 | 
						|
    c = strcmp(pNos->z, pTos->z);
 | 
						|
  }
 | 
						|
  /* The asserts on each case of the following switch are there to verify
 | 
						|
  ** that string comparison opcodes are always exactly 6 greater than the
 | 
						|
  ** corresponding numeric comparison opcodes.  The code generator depends
 | 
						|
  ** on this fact.
 | 
						|
  */
 | 
						|
  switch( pOp->opcode ){
 | 
						|
    case OP_StrEq:    c = c==0;    assert( pOp->opcode-6==OP_Eq );   break;
 | 
						|
    case OP_StrNe:    c = c!=0;    assert( pOp->opcode-6==OP_Ne );   break;
 | 
						|
    case OP_StrLt:    c = c<0;     assert( pOp->opcode-6==OP_Lt );   break;
 | 
						|
    case OP_StrLe:    c = c<=0;    assert( pOp->opcode-6==OP_Le );   break;
 | 
						|
    case OP_StrGt:    c = c>0;     assert( pOp->opcode-6==OP_Gt );   break;
 | 
						|
    default:          c = c>=0;    assert( pOp->opcode-6==OP_Ge );   break;
 | 
						|
  }
 | 
						|
  popStack(&pTos, 2);
 | 
						|
  if( pOp->p2 ){
 | 
						|
    if( c ) pc = pOp->p2-1;
 | 
						|
  }else{
 | 
						|
    pTos++;
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
    pTos->i = c;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: And * * *
 | 
						|
**
 | 
						|
** Pop two values off the stack.  Take the logical AND of the
 | 
						|
** two values and push the resulting boolean value back onto the
 | 
						|
** stack. 
 | 
						|
*/
 | 
						|
/* Opcode: Or * * *
 | 
						|
**
 | 
						|
** Pop two values off the stack.  Take the logical OR of the
 | 
						|
** two values and push the resulting boolean value back onto the
 | 
						|
** stack. 
 | 
						|
*/
 | 
						|
case OP_And:
 | 
						|
case OP_Or: {
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
 | 
						|
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  if( pTos->flags & MEM_Null ){
 | 
						|
    v1 = 2;
 | 
						|
  }else{
 | 
						|
    Integerify(pTos);
 | 
						|
    v1 = pTos->i==0;
 | 
						|
  }
 | 
						|
  if( pNos->flags & MEM_Null ){
 | 
						|
    v2 = 2;
 | 
						|
  }else{
 | 
						|
    Integerify(pNos);
 | 
						|
    v2 = pNos->i==0;
 | 
						|
  }
 | 
						|
  if( pOp->opcode==OP_And ){
 | 
						|
    static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
 | 
						|
    v1 = and_logic[v1*3+v2];
 | 
						|
  }else{
 | 
						|
    static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
 | 
						|
    v1 = or_logic[v1*3+v2];
 | 
						|
  }
 | 
						|
  popStack(&pTos, 2);
 | 
						|
  pTos++;
 | 
						|
  if( v1==2 ){
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }else{
 | 
						|
    pTos->i = v1==0;
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Negative * * *
 | 
						|
**
 | 
						|
** Treat the top of the stack as a numeric quantity.  Replace it
 | 
						|
** with its additive inverse.  If the top of the stack is NULL
 | 
						|
** its value is unchanged.
 | 
						|
*/
 | 
						|
/* Opcode: AbsValue * * *
 | 
						|
**
 | 
						|
** Treat the top of the stack as a numeric quantity.  Replace it
 | 
						|
** with its absolute value. If the top of the stack is NULL
 | 
						|
** its value is unchanged.
 | 
						|
*/
 | 
						|
case OP_Negative:
 | 
						|
case OP_AbsValue: {
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( pTos->flags & MEM_Real ){
 | 
						|
    Release(pTos);
 | 
						|
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
 | 
						|
      pTos->r = -pTos->r;
 | 
						|
    }
 | 
						|
    pTos->flags = MEM_Real;
 | 
						|
  }else if( pTos->flags & MEM_Int ){
 | 
						|
    Release(pTos);
 | 
						|
    if( pOp->opcode==OP_Negative || pTos->i<0 ){
 | 
						|
      pTos->i = -pTos->i;
 | 
						|
    }
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
  }else if( pTos->flags & MEM_Null ){
 | 
						|
    /* Do nothing */
 | 
						|
  }else{
 | 
						|
    Realify(pTos);
 | 
						|
    Release(pTos);
 | 
						|
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
 | 
						|
      pTos->r = -pTos->r;
 | 
						|
    }
 | 
						|
    pTos->flags = MEM_Real;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Not * * *
 | 
						|
**
 | 
						|
** Interpret the top of the stack as a boolean value.  Replace it
 | 
						|
** with its complement.  If the top of the stack is NULL its value
 | 
						|
** is unchanged.
 | 
						|
*/
 | 
						|
case OP_Not: {
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
 | 
						|
  Integerify(pTos);
 | 
						|
  Release(pTos);
 | 
						|
  pTos->i = !pTos->i;
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: BitNot * * *
 | 
						|
**
 | 
						|
** Interpret the top of the stack as an value.  Replace it
 | 
						|
** with its ones-complement.  If the top of the stack is NULL its
 | 
						|
** value is unchanged.
 | 
						|
*/
 | 
						|
case OP_BitNot: {
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
 | 
						|
  Integerify(pTos);
 | 
						|
  Release(pTos);
 | 
						|
  pTos->i = ~pTos->i;
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Noop * * *
 | 
						|
**
 | 
						|
** Do nothing.  This instruction is often useful as a jump
 | 
						|
** destination.
 | 
						|
*/
 | 
						|
case OP_Noop: {
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: If P1 P2 *
 | 
						|
**
 | 
						|
** Pop a single boolean from the stack.  If the boolean popped is
 | 
						|
** true, then jump to p2.  Otherwise continue to the next instruction.
 | 
						|
** An integer is false if zero and true otherwise.  A string is
 | 
						|
** false if it has zero length and true otherwise.
 | 
						|
**
 | 
						|
** If the value popped of the stack is NULL, then take the jump if P1
 | 
						|
** is true and fall through if P1 is false.
 | 
						|
*/
 | 
						|
/* Opcode: IfNot P1 P2 *
 | 
						|
**
 | 
						|
** Pop a single boolean from the stack.  If the boolean popped is
 | 
						|
** false, then jump to p2.  Otherwise continue to the next instruction.
 | 
						|
** An integer is false if zero and true otherwise.  A string is
 | 
						|
** false if it has zero length and true otherwise.
 | 
						|
**
 | 
						|
** If the value popped of the stack is NULL, then take the jump if P1
 | 
						|
** is true and fall through if P1 is false.
 | 
						|
*/
 | 
						|
case OP_If:
 | 
						|
case OP_IfNot: {
 | 
						|
  int c;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( pTos->flags & MEM_Null ){
 | 
						|
    c = pOp->p1;
 | 
						|
  }else{
 | 
						|
    Integerify(pTos);
 | 
						|
    c = pTos->i;
 | 
						|
    if( pOp->opcode==OP_IfNot ) c = !c;
 | 
						|
  }
 | 
						|
  assert( (pTos->flags & MEM_Dyn)==0 );
 | 
						|
  pTos--;
 | 
						|
  if( c ) pc = pOp->p2-1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IsNull P1 P2 *
 | 
						|
**
 | 
						|
** If any of the top abs(P1) values on the stack are NULL, then jump
 | 
						|
** to P2.  Pop the stack P1 times if P1>0.   If P1<0 leave the stack
 | 
						|
** unchanged.
 | 
						|
*/
 | 
						|
case OP_IsNull: {
 | 
						|
  int i, cnt;
 | 
						|
  Mem *pTerm;
 | 
						|
  cnt = pOp->p1;
 | 
						|
  if( cnt<0 ) cnt = -cnt;
 | 
						|
  pTerm = &pTos[1-cnt];
 | 
						|
  assert( pTerm>=p->aStack );
 | 
						|
  for(i=0; i<cnt; i++, pTerm++){
 | 
						|
    if( pTerm->flags & MEM_Null ){
 | 
						|
      pc = pOp->p2-1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pOp->p1>0 ) popStack(&pTos, cnt);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: NotNull P1 P2 *
 | 
						|
**
 | 
						|
** Jump to P2 if the top P1 values on the stack are all not NULL.  Pop the
 | 
						|
** stack if P1 times if P1 is greater than zero.  If P1 is less than
 | 
						|
** zero then leave the stack unchanged.
 | 
						|
*/
 | 
						|
case OP_NotNull: {
 | 
						|
  int i, cnt;
 | 
						|
  cnt = pOp->p1;
 | 
						|
  if( cnt<0 ) cnt = -cnt;
 | 
						|
  assert( &pTos[1-cnt] >= p->aStack );
 | 
						|
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
 | 
						|
  if( i>=cnt ) pc = pOp->p2-1;
 | 
						|
  if( pOp->p1>0 ) popStack(&pTos, cnt);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: MakeRecord P1 P2 *
 | 
						|
**
 | 
						|
** Convert the top P1 entries of the stack into a single entry
 | 
						|
** suitable for use as a data record in a database table.  The
 | 
						|
** details of the format are irrelavant as long as the OP_Column
 | 
						|
** opcode can decode the record later.  Refer to source code
 | 
						|
** comments for the details of the record format.
 | 
						|
**
 | 
						|
** If P2 is true (non-zero) and one or more of the P1 entries
 | 
						|
** that go into building the record is NULL, then add some extra
 | 
						|
** bytes to the record to make it distinct for other entries created
 | 
						|
** during the same run of the VDBE.  The extra bytes added are a
 | 
						|
** counter that is reset with each run of the VDBE, so records
 | 
						|
** created this way will not necessarily be distinct across runs.
 | 
						|
** But they should be distinct for transient tables (created using
 | 
						|
** OP_OpenTemp) which is what they are intended for.
 | 
						|
**
 | 
						|
** (Later:) The P2==1 option was intended to make NULLs distinct
 | 
						|
** for the UNION operator.  But I have since discovered that NULLs
 | 
						|
** are indistinct for UNION.  So this option is never used.
 | 
						|
*/
 | 
						|
case OP_MakeRecord: {
 | 
						|
  char *zNewRecord;
 | 
						|
  int nByte;
 | 
						|
  int nField;
 | 
						|
  int i, j;
 | 
						|
  int idxWidth;
 | 
						|
  u32 addr;
 | 
						|
  Mem *pRec;
 | 
						|
  int addUnique = 0;   /* True to cause bytes to be added to make the
 | 
						|
                       ** generated record distinct */
 | 
						|
  char zTemp[NBFS];    /* Temp space for small records */
 | 
						|
 | 
						|
  /* Assuming the record contains N fields, the record format looks
 | 
						|
  ** like this:
 | 
						|
  **
 | 
						|
  **   -------------------------------------------------------------------
 | 
						|
  **   | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
 | 
						|
  **   -------------------------------------------------------------------
 | 
						|
  **
 | 
						|
  ** All data fields are converted to strings before being stored and
 | 
						|
  ** are stored with their null terminators.  NULL entries omit the
 | 
						|
  ** null terminator.  Thus an empty string uses 1 byte and a NULL uses
 | 
						|
  ** zero bytes.  Data(0) is taken from the lowest element of the stack
 | 
						|
  ** and data(N-1) is the top of the stack.
 | 
						|
  **
 | 
						|
  ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
 | 
						|
  ** how big the total record is.  Idx(0) contains the offset to the start
 | 
						|
  ** of data(0).  Idx(k) contains the offset to the start of data(k).
 | 
						|
  ** Idx(N) contains the total number of bytes in the record.
 | 
						|
  */
 | 
						|
  nField = pOp->p1;
 | 
						|
  pRec = &pTos[1-nField];
 | 
						|
  assert( pRec>=p->aStack );
 | 
						|
  nByte = 0;
 | 
						|
  for(i=0; i<nField; i++, pRec++){
 | 
						|
    if( pRec->flags & MEM_Null ){
 | 
						|
      addUnique = pOp->p2;
 | 
						|
    }else{
 | 
						|
      Stringify(pRec);
 | 
						|
      nByte += pRec->n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( addUnique ) nByte += sizeof(p->uniqueCnt);
 | 
						|
  if( nByte + nField + 1 < 256 ){
 | 
						|
    idxWidth = 1;
 | 
						|
  }else if( nByte + 2*nField + 2 < 65536 ){
 | 
						|
    idxWidth = 2;
 | 
						|
  }else{
 | 
						|
    idxWidth = 3;
 | 
						|
  }
 | 
						|
  nByte += idxWidth*(nField + 1);
 | 
						|
  if( nByte>MAX_BYTES_PER_ROW ){
 | 
						|
    rc = SQLITE_TOOBIG;
 | 
						|
    goto abort_due_to_error;
 | 
						|
  }
 | 
						|
  if( nByte<=NBFS ){
 | 
						|
    zNewRecord = zTemp;
 | 
						|
  }else{
 | 
						|
    zNewRecord = sqliteMallocRaw( nByte );
 | 
						|
    if( zNewRecord==0 ) goto no_mem;
 | 
						|
  }
 | 
						|
  j = 0;
 | 
						|
  addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
 | 
						|
  for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
 | 
						|
    zNewRecord[j++] = addr & 0xff;
 | 
						|
    if( idxWidth>1 ){
 | 
						|
      zNewRecord[j++] = (addr>>8)&0xff;
 | 
						|
      if( idxWidth>2 ){
 | 
						|
        zNewRecord[j++] = (addr>>16)&0xff;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( (pRec->flags & MEM_Null)==0 ){
 | 
						|
      addr += pRec->n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  zNewRecord[j++] = addr & 0xff;
 | 
						|
  if( idxWidth>1 ){
 | 
						|
    zNewRecord[j++] = (addr>>8)&0xff;
 | 
						|
    if( idxWidth>2 ){
 | 
						|
      zNewRecord[j++] = (addr>>16)&0xff;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( addUnique ){
 | 
						|
    memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
 | 
						|
    p->uniqueCnt++;
 | 
						|
    j += sizeof(p->uniqueCnt);
 | 
						|
  }
 | 
						|
  for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
 | 
						|
    if( (pRec->flags & MEM_Null)==0 ){
 | 
						|
      memcpy(&zNewRecord[j], pRec->z, pRec->n);
 | 
						|
      j += pRec->n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  popStack(&pTos, nField);
 | 
						|
  pTos++;
 | 
						|
  pTos->n = nByte;
 | 
						|
  if( nByte<=NBFS ){
 | 
						|
    assert( zNewRecord==zTemp );
 | 
						|
    memcpy(pTos->zShort, zTemp, nByte);
 | 
						|
    pTos->z = pTos->zShort;
 | 
						|
    pTos->flags = MEM_Str | MEM_Short;
 | 
						|
  }else{
 | 
						|
    assert( zNewRecord!=zTemp );
 | 
						|
    pTos->z = zNewRecord;
 | 
						|
    pTos->flags = MEM_Str | MEM_Dyn;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: MakeKey P1 P2 P3
 | 
						|
**
 | 
						|
** Convert the top P1 entries of the stack into a single entry suitable
 | 
						|
** for use as the key in an index.  The top P1 records are
 | 
						|
** converted to strings and merged.  The null-terminators 
 | 
						|
** are retained and used as separators.
 | 
						|
** The lowest entry in the stack is the first field and the top of the
 | 
						|
** stack becomes the last.
 | 
						|
**
 | 
						|
** If P2 is not zero, then the original entries remain on the stack
 | 
						|
** and the new key is pushed on top.  If P2 is zero, the original
 | 
						|
** data is popped off the stack first then the new key is pushed
 | 
						|
** back in its place.
 | 
						|
**
 | 
						|
** P3 is a string that is P1 characters long.  Each character is either
 | 
						|
** an 'n' or a 't' to indicates if the argument should be intepreted as
 | 
						|
** numeric or text type.  The first character of P3 corresponds to the
 | 
						|
** lowest element on the stack.  If P3 is NULL then all arguments are
 | 
						|
** assumed to be of the numeric type.
 | 
						|
**
 | 
						|
** The type makes a difference in that text-type fields may not be 
 | 
						|
** introduced by 'b' (as described in the next paragraph).  The
 | 
						|
** first character of a text-type field must be either 'a' (if it is NULL)
 | 
						|
** or 'c'.  Numeric fields will be introduced by 'b' if their content
 | 
						|
** looks like a well-formed number.  Otherwise the 'a' or 'c' will be
 | 
						|
** used.
 | 
						|
**
 | 
						|
** The key is a concatenation of fields.  Each field is terminated by
 | 
						|
** a single 0x00 character.  A NULL field is introduced by an 'a' and
 | 
						|
** is followed immediately by its 0x00 terminator.  A numeric field is
 | 
						|
** introduced by a single character 'b' and is followed by a sequence
 | 
						|
** of characters that represent the number such that a comparison of
 | 
						|
** the character string using memcpy() sorts the numbers in numerical
 | 
						|
** order.  The character strings for numbers are generated using the
 | 
						|
** sqliteRealToSortable() function.  A text field is introduced by a
 | 
						|
** 'c' character and is followed by the exact text of the field.  The
 | 
						|
** use of an 'a', 'b', or 'c' character at the beginning of each field
 | 
						|
** guarantees that NULLs sort before numbers and that numbers sort
 | 
						|
** before text.  0x00 characters do not occur except as separators
 | 
						|
** between fields.
 | 
						|
**
 | 
						|
** See also: MakeIdxKey, SortMakeKey
 | 
						|
*/
 | 
						|
/* Opcode: MakeIdxKey P1 P2 P3
 | 
						|
**
 | 
						|
** Convert the top P1 entries of the stack into a single entry suitable
 | 
						|
** for use as the key in an index.  In addition, take one additional integer
 | 
						|
** off of the stack, treat that integer as a four-byte record number, and
 | 
						|
** append the four bytes to the key.  Thus a total of P1+1 entries are
 | 
						|
** popped from the stack for this instruction and a single entry is pushed
 | 
						|
** back.  The first P1 entries that are popped are strings and the last
 | 
						|
** entry (the lowest on the stack) is an integer record number.
 | 
						|
**
 | 
						|
** The converstion of the first P1 string entries occurs just like in
 | 
						|
** MakeKey.  Each entry is separated from the others by a null.
 | 
						|
** The entire concatenation is null-terminated.  The lowest entry
 | 
						|
** in the stack is the first field and the top of the stack becomes the
 | 
						|
** last.
 | 
						|
**
 | 
						|
** If P2 is not zero and one or more of the P1 entries that go into the
 | 
						|
** generated key is NULL, then jump to P2 after the new key has been
 | 
						|
** pushed on the stack.  In other words, jump to P2 if the key is
 | 
						|
** guaranteed to be unique.  This jump can be used to skip a subsequent
 | 
						|
** uniqueness test.
 | 
						|
**
 | 
						|
** P3 is a string that is P1 characters long.  Each character is either
 | 
						|
** an 'n' or a 't' to indicates if the argument should be numeric or
 | 
						|
** text.  The first character corresponds to the lowest element on the
 | 
						|
** stack.  If P3 is null then all arguments are assumed to be numeric.
 | 
						|
**
 | 
						|
** See also:  MakeKey, SortMakeKey
 | 
						|
*/
 | 
						|
case OP_MakeIdxKey:
 | 
						|
case OP_MakeKey: {
 | 
						|
  char *zNewKey;
 | 
						|
  int nByte;
 | 
						|
  int nField;
 | 
						|
  int addRowid;
 | 
						|
  int i, j;
 | 
						|
  int containsNull = 0;
 | 
						|
  Mem *pRec;
 | 
						|
  char zTemp[NBFS];
 | 
						|
 | 
						|
  addRowid = pOp->opcode==OP_MakeIdxKey;
 | 
						|
  nField = pOp->p1;
 | 
						|
  pRec = &pTos[1-nField];
 | 
						|
  assert( pRec>=p->aStack );
 | 
						|
  nByte = 0;
 | 
						|
  for(j=0, i=0; i<nField; i++, j++, pRec++){
 | 
						|
    int flags = pRec->flags;
 | 
						|
    int len;
 | 
						|
    char *z;
 | 
						|
    if( flags & MEM_Null ){
 | 
						|
      nByte += 2;
 | 
						|
      containsNull = 1;
 | 
						|
    }else if( pOp->p3 && pOp->p3[j]=='t' ){
 | 
						|
      Stringify(pRec);
 | 
						|
      pRec->flags &= ~(MEM_Int|MEM_Real);
 | 
						|
      nByte += pRec->n+1;
 | 
						|
    }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
 | 
						|
      if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
 | 
						|
        pRec->r = pRec->i;
 | 
						|
      }else if( (flags & (MEM_Real|MEM_Int))==0 ){
 | 
						|
        pRec->r = sqliteAtoF(pRec->z, 0);
 | 
						|
      }
 | 
						|
      Release(pRec);
 | 
						|
      z = pRec->zShort;
 | 
						|
      sqliteRealToSortable(pRec->r, z);
 | 
						|
      len = strlen(z);
 | 
						|
      pRec->z = 0;
 | 
						|
      pRec->flags = MEM_Real;
 | 
						|
      pRec->n = len+1;
 | 
						|
      nByte += pRec->n+1;
 | 
						|
    }else{
 | 
						|
      nByte += pRec->n+1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
 | 
						|
    rc = SQLITE_TOOBIG;
 | 
						|
    goto abort_due_to_error;
 | 
						|
  }
 | 
						|
  if( addRowid ) nByte += sizeof(u32);
 | 
						|
  if( nByte<=NBFS ){
 | 
						|
    zNewKey = zTemp;
 | 
						|
  }else{
 | 
						|
    zNewKey = sqliteMallocRaw( nByte );
 | 
						|
    if( zNewKey==0 ) goto no_mem;
 | 
						|
  }
 | 
						|
  j = 0;
 | 
						|
  pRec = &pTos[1-nField];
 | 
						|
  for(i=0; i<nField; i++, pRec++){
 | 
						|
    if( pRec->flags & MEM_Null ){
 | 
						|
      zNewKey[j++] = 'a';
 | 
						|
      zNewKey[j++] = 0;
 | 
						|
    }else if( pRec->flags==MEM_Real ){
 | 
						|
      zNewKey[j++] = 'b';
 | 
						|
      memcpy(&zNewKey[j], pRec->zShort, pRec->n);
 | 
						|
      j += pRec->n;
 | 
						|
    }else{
 | 
						|
      assert( pRec->flags & MEM_Str );
 | 
						|
      zNewKey[j++] = 'c';
 | 
						|
      memcpy(&zNewKey[j], pRec->z, pRec->n);
 | 
						|
      j += pRec->n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( addRowid ){
 | 
						|
    u32 iKey;
 | 
						|
    pRec = &pTos[-nField];
 | 
						|
    assert( pRec>=p->aStack );
 | 
						|
    Integerify(pRec);
 | 
						|
    iKey = intToKey(pRec->i);
 | 
						|
    memcpy(&zNewKey[j], &iKey, sizeof(u32));
 | 
						|
    popStack(&pTos, nField+1);
 | 
						|
    if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
 | 
						|
  }else{
 | 
						|
    if( pOp->p2==0 ) popStack(&pTos, nField);
 | 
						|
  }
 | 
						|
  pTos++;
 | 
						|
  pTos->n = nByte;
 | 
						|
  if( nByte<=NBFS ){
 | 
						|
    assert( zNewKey==zTemp );
 | 
						|
    pTos->z = pTos->zShort;
 | 
						|
    memcpy(pTos->zShort, zTemp, nByte);
 | 
						|
    pTos->flags = MEM_Str | MEM_Short;
 | 
						|
  }else{
 | 
						|
    pTos->z = zNewKey;
 | 
						|
    pTos->flags = MEM_Str | MEM_Dyn;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IncrKey * * *
 | 
						|
**
 | 
						|
** The top of the stack should contain an index key generated by
 | 
						|
** The MakeKey opcode.  This routine increases the least significant
 | 
						|
** byte of that key by one.  This is used so that the MoveTo opcode
 | 
						|
** will move to the first entry greater than the key rather than to
 | 
						|
** the key itself.
 | 
						|
*/
 | 
						|
case OP_IncrKey: {
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  /* The IncrKey opcode is only applied to keys generated by
 | 
						|
  ** MakeKey or MakeIdxKey and the results of those operands
 | 
						|
  ** are always dynamic strings or zShort[] strings.  So we
 | 
						|
  ** are always free to modify the string in place.
 | 
						|
  */
 | 
						|
  assert( pTos->flags & (MEM_Dyn|MEM_Short) );
 | 
						|
  pTos->z[pTos->n-1]++;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Checkpoint P1 * *
 | 
						|
**
 | 
						|
** Begin a checkpoint.  A checkpoint is the beginning of a operation that
 | 
						|
** is part of a larger transaction but which might need to be rolled back
 | 
						|
** itself without effecting the containing transaction.  A checkpoint will
 | 
						|
** be automatically committed or rollback when the VDBE halts.
 | 
						|
**
 | 
						|
** The checkpoint is begun on the database file with index P1.  The main
 | 
						|
** database file has an index of 0 and the file used for temporary tables
 | 
						|
** has an index of 1.
 | 
						|
*/
 | 
						|
case OP_Checkpoint: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
 | 
						|
    rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
 | 
						|
    if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Transaction P1 * *
 | 
						|
**
 | 
						|
** Begin a transaction.  The transaction ends when a Commit or Rollback
 | 
						|
** opcode is encountered.  Depending on the ON CONFLICT setting, the
 | 
						|
** transaction might also be rolled back if an error is encountered.
 | 
						|
**
 | 
						|
** P1 is the index of the database file on which the transaction is
 | 
						|
** started.  Index 0 is the main database file and index 1 is the
 | 
						|
** file used for temporary tables.
 | 
						|
**
 | 
						|
** A write lock is obtained on the database file when a transaction is
 | 
						|
** started.  No other process can read or write the file while the
 | 
						|
** transaction is underway.  Starting a transaction also creates a
 | 
						|
** rollback journal.  A transaction must be started before any changes
 | 
						|
** can be made to the database.
 | 
						|
*/
 | 
						|
case OP_Transaction: {
 | 
						|
  int busy = 1;
 | 
						|
  int i = pOp->p1;
 | 
						|
  assert( i>=0 && i<db->nDb );
 | 
						|
  if( db->aDb[i].inTrans ) break;
 | 
						|
  while( db->aDb[i].pBt!=0 && busy ){
 | 
						|
    rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
 | 
						|
    switch( rc ){
 | 
						|
      case SQLITE_BUSY: {
 | 
						|
        if( db->xBusyCallback==0 ){
 | 
						|
          p->pc = pc;
 | 
						|
          p->undoTransOnError = 1;
 | 
						|
          p->rc = SQLITE_BUSY;
 | 
						|
          p->pTos = pTos;
 | 
						|
          return SQLITE_BUSY;
 | 
						|
        }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
 | 
						|
          sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
 | 
						|
          busy = 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case SQLITE_READONLY: {
 | 
						|
        rc = SQLITE_OK;
 | 
						|
        /* Fall thru into the next case */
 | 
						|
      }
 | 
						|
      case SQLITE_OK: {
 | 
						|
        p->inTempTrans = 0;
 | 
						|
        busy = 0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      default: {
 | 
						|
        goto abort_due_to_error;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  db->aDb[i].inTrans = 1;
 | 
						|
  p->undoTransOnError = 1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Commit * * *
 | 
						|
**
 | 
						|
** Cause all modifications to the database that have been made since the
 | 
						|
** last Transaction to actually take effect.  No additional modifications
 | 
						|
** are allowed until another transaction is started.  The Commit instruction
 | 
						|
** deletes the journal file and releases the write lock on the database.
 | 
						|
** A read lock continues to be held if there are still cursors open.
 | 
						|
*/
 | 
						|
case OP_Commit: {
 | 
						|
  int i;
 | 
						|
  if( db->xCommitCallback!=0 ){
 | 
						|
    if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
 | 
						|
    if( db->xCommitCallback(db->pCommitArg)!=0 ){
 | 
						|
      rc = SQLITE_CONSTRAINT;
 | 
						|
    }
 | 
						|
    if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
 | 
						|
  }
 | 
						|
  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | 
						|
    if( db->aDb[i].inTrans ){
 | 
						|
      rc = sqliteBtreeCommit(db->aDb[i].pBt);
 | 
						|
      db->aDb[i].inTrans = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    sqliteCommitInternalChanges(db);
 | 
						|
  }else{
 | 
						|
    sqliteRollbackAll(db);
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Rollback P1 * *
 | 
						|
**
 | 
						|
** Cause all modifications to the database that have been made since the
 | 
						|
** last Transaction to be undone. The database is restored to its state
 | 
						|
** before the Transaction opcode was executed.  No additional modifications
 | 
						|
** are allowed until another transaction is started.
 | 
						|
**
 | 
						|
** P1 is the index of the database file that is committed.  An index of 0
 | 
						|
** is used for the main database and an index of 1 is used for the file used
 | 
						|
** to hold temporary tables.
 | 
						|
**
 | 
						|
** This instruction automatically closes all cursors and releases both
 | 
						|
** the read and write locks on the indicated database.
 | 
						|
*/
 | 
						|
case OP_Rollback: {
 | 
						|
  sqliteRollbackAll(db);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ReadCookie P1 P2 *
 | 
						|
**
 | 
						|
** Read cookie number P2 from database P1 and push it onto the stack.
 | 
						|
** P2==0 is the schema version.  P2==1 is the database format.
 | 
						|
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
 | 
						|
** the main database file and P1==1 is the database file used to store
 | 
						|
** temporary tables.
 | 
						|
**
 | 
						|
** There must be a read-lock on the database (either a transaction
 | 
						|
** must be started or there must be an open cursor) before
 | 
						|
** executing this instruction.
 | 
						|
*/
 | 
						|
case OP_ReadCookie: {
 | 
						|
  int aMeta[SQLITE_N_BTREE_META];
 | 
						|
  assert( pOp->p2<SQLITE_N_BTREE_META );
 | 
						|
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
						|
  assert( db->aDb[pOp->p1].pBt!=0 );
 | 
						|
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
 | 
						|
  pTos++;
 | 
						|
  pTos->i = aMeta[1+pOp->p2];
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SetCookie P1 P2 *
 | 
						|
**
 | 
						|
** Write the top of the stack into cookie number P2 of database P1.
 | 
						|
** P2==0 is the schema version.  P2==1 is the database format.
 | 
						|
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
 | 
						|
** the main database file and P1==1 is the database file used to store
 | 
						|
** temporary tables.
 | 
						|
**
 | 
						|
** A transaction must be started before executing this opcode.
 | 
						|
*/
 | 
						|
case OP_SetCookie: {
 | 
						|
  int aMeta[SQLITE_N_BTREE_META];
 | 
						|
  assert( pOp->p2<SQLITE_N_BTREE_META );
 | 
						|
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
						|
  assert( db->aDb[pOp->p1].pBt!=0 );
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  Integerify(pTos)
 | 
						|
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    aMeta[1+pOp->p2] = pTos->i;
 | 
						|
    rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: VerifyCookie P1 P2 *
 | 
						|
**
 | 
						|
** Check the value of global database parameter number 0 (the
 | 
						|
** schema version) and make sure it is equal to P2.  
 | 
						|
** P1 is the database number which is 0 for the main database file
 | 
						|
** and 1 for the file holding temporary tables and some higher number
 | 
						|
** for auxiliary databases.
 | 
						|
**
 | 
						|
** The cookie changes its value whenever the database schema changes.
 | 
						|
** This operation is used to detect when that the cookie has changed
 | 
						|
** and that the current process needs to reread the schema.
 | 
						|
**
 | 
						|
** Either a transaction needs to have been started or an OP_Open needs
 | 
						|
** to be executed (to establish a read lock) before this opcode is
 | 
						|
** invoked.
 | 
						|
*/
 | 
						|
case OP_VerifyCookie: {
 | 
						|
  int aMeta[SQLITE_N_BTREE_META];
 | 
						|
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
						|
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
 | 
						|
  if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
 | 
						|
    sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
 | 
						|
    rc = SQLITE_SCHEMA;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: OpenRead P1 P2 P3
 | 
						|
**
 | 
						|
** Open a read-only cursor for the database table whose root page is
 | 
						|
** P2 in a database file.  The database file is determined by an 
 | 
						|
** integer from the top of the stack.  0 means the main database and
 | 
						|
** 1 means the database used for temporary tables.  Give the new 
 | 
						|
** cursor an identifier of P1.  The P1 values need not be contiguous
 | 
						|
** but all P1 values should be small integers.  It is an error for
 | 
						|
** P1 to be negative.
 | 
						|
**
 | 
						|
** If P2==0 then take the root page number from the next of the stack.
 | 
						|
**
 | 
						|
** There will be a read lock on the database whenever there is an
 | 
						|
** open cursor.  If the database was unlocked prior to this instruction
 | 
						|
** then a read lock is acquired as part of this instruction.  A read
 | 
						|
** lock allows other processes to read the database but prohibits
 | 
						|
** any other process from modifying the database.  The read lock is
 | 
						|
** released when all cursors are closed.  If this instruction attempts
 | 
						|
** to get a read lock but fails, the script terminates with an
 | 
						|
** SQLITE_BUSY error code.
 | 
						|
**
 | 
						|
** The P3 value is the name of the table or index being opened.
 | 
						|
** The P3 value is not actually used by this opcode and may be
 | 
						|
** omitted.  But the code generator usually inserts the index or
 | 
						|
** table name into P3 to make the code easier to read.
 | 
						|
**
 | 
						|
** See also OpenWrite.
 | 
						|
*/
 | 
						|
/* Opcode: OpenWrite P1 P2 P3
 | 
						|
**
 | 
						|
** Open a read/write cursor named P1 on the table or index whose root
 | 
						|
** page is P2.  If P2==0 then take the root page number from the stack.
 | 
						|
**
 | 
						|
** The P3 value is the name of the table or index being opened.
 | 
						|
** The P3 value is not actually used by this opcode and may be
 | 
						|
** omitted.  But the code generator usually inserts the index or
 | 
						|
** table name into P3 to make the code easier to read.
 | 
						|
**
 | 
						|
** This instruction works just like OpenRead except that it opens the cursor
 | 
						|
** in read/write mode.  For a given table, there can be one or more read-only
 | 
						|
** cursors or a single read/write cursor but not both.
 | 
						|
**
 | 
						|
** See also OpenRead.
 | 
						|
*/
 | 
						|
case OP_OpenRead:
 | 
						|
case OP_OpenWrite: {
 | 
						|
  int busy = 0;
 | 
						|
  int i = pOp->p1;
 | 
						|
  int p2 = pOp->p2;
 | 
						|
  int wrFlag;
 | 
						|
  Btree *pX;
 | 
						|
  int iDb;
 | 
						|
  
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  Integerify(pTos);
 | 
						|
  iDb = pTos->i;
 | 
						|
  pTos--;
 | 
						|
  assert( iDb>=0 && iDb<db->nDb );
 | 
						|
  pX = db->aDb[iDb].pBt;
 | 
						|
  assert( pX!=0 );
 | 
						|
  wrFlag = pOp->opcode==OP_OpenWrite;
 | 
						|
  if( p2<=0 ){
 | 
						|
    assert( pTos>=p->aStack );
 | 
						|
    Integerify(pTos);
 | 
						|
    p2 = pTos->i;
 | 
						|
    pTos--;
 | 
						|
    if( p2<2 ){
 | 
						|
      sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
 | 
						|
      rc = SQLITE_INTERNAL;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert( i>=0 );
 | 
						|
  if( expandCursorArraySize(p, i) ) goto no_mem;
 | 
						|
  sqliteVdbeCleanupCursor(&p->aCsr[i]);
 | 
						|
  memset(&p->aCsr[i], 0, sizeof(Cursor));
 | 
						|
  p->aCsr[i].nullRow = 1;
 | 
						|
  if( pX==0 ) break;
 | 
						|
  do{
 | 
						|
    rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
 | 
						|
    switch( rc ){
 | 
						|
      case SQLITE_BUSY: {
 | 
						|
        if( db->xBusyCallback==0 ){
 | 
						|
          p->pc = pc;
 | 
						|
          p->rc = SQLITE_BUSY;
 | 
						|
          p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
 | 
						|
          return SQLITE_BUSY;
 | 
						|
        }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
 | 
						|
          sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
 | 
						|
          busy = 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case SQLITE_OK: {
 | 
						|
        busy = 0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      default: {
 | 
						|
        goto abort_due_to_error;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }while( busy );
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: OpenTemp P1 P2 *
 | 
						|
**
 | 
						|
** Open a new cursor to a transient table.
 | 
						|
** The transient cursor is always opened read/write even if 
 | 
						|
** the main database is read-only.  The transient table is deleted
 | 
						|
** automatically when the cursor is closed.
 | 
						|
**
 | 
						|
** The cursor points to a BTree table if P2==0 and to a BTree index
 | 
						|
** if P2==1.  A BTree table must have an integer key and can have arbitrary
 | 
						|
** data.  A BTree index has no data but can have an arbitrary key.
 | 
						|
**
 | 
						|
** This opcode is used for tables that exist for the duration of a single
 | 
						|
** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
 | 
						|
** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
 | 
						|
** context of this opcode means for the duration of a single SQL statement
 | 
						|
** whereas "Temporary" in the context of CREATE TABLE means for the duration
 | 
						|
** of the connection to the database.  Same word; different meanings.
 | 
						|
*/
 | 
						|
case OP_OpenTemp: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pCx;
 | 
						|
  assert( i>=0 );
 | 
						|
  if( expandCursorArraySize(p, i) ) goto no_mem;
 | 
						|
  pCx = &p->aCsr[i];
 | 
						|
  sqliteVdbeCleanupCursor(pCx);
 | 
						|
  memset(pCx, 0, sizeof(*pCx));
 | 
						|
  pCx->nullRow = 1;
 | 
						|
  rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
 | 
						|
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    rc = sqliteBtreeBeginTrans(pCx->pBt);
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    if( pOp->p2 ){
 | 
						|
      int pgno;
 | 
						|
      rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
 | 
						|
      if( rc==SQLITE_OK ){
 | 
						|
        rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: OpenPseudo P1 * *
 | 
						|
**
 | 
						|
** Open a new cursor that points to a fake table that contains a single
 | 
						|
** row of data.  Any attempt to write a second row of data causes the
 | 
						|
** first row to be deleted.  All data is deleted when the cursor is
 | 
						|
** closed.
 | 
						|
**
 | 
						|
** A pseudo-table created by this opcode is useful for holding the
 | 
						|
** NEW or OLD tables in a trigger.
 | 
						|
*/
 | 
						|
case OP_OpenPseudo: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pCx;
 | 
						|
  assert( i>=0 );
 | 
						|
  if( expandCursorArraySize(p, i) ) goto no_mem;
 | 
						|
  pCx = &p->aCsr[i];
 | 
						|
  sqliteVdbeCleanupCursor(pCx);
 | 
						|
  memset(pCx, 0, sizeof(*pCx));
 | 
						|
  pCx->nullRow = 1;
 | 
						|
  pCx->pseudoTable = 1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Close P1 * *
 | 
						|
**
 | 
						|
** Close a cursor previously opened as P1.  If P1 is not
 | 
						|
** currently open, this instruction is a no-op.
 | 
						|
*/
 | 
						|
case OP_Close: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  if( i>=0 && i<p->nCursor ){
 | 
						|
    sqliteVdbeCleanupCursor(&p->aCsr[i]);
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: MoveTo P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top of the stack and use its value as a key.  Reposition
 | 
						|
** cursor P1 so that it points to an entry with a matching key.  If
 | 
						|
** the table contains no record with a matching key, then the cursor
 | 
						|
** is left pointing at the first record that is greater than the key.
 | 
						|
** If there are no records greater than the key and P2 is not zero,
 | 
						|
** then an immediate jump to P2 is made.
 | 
						|
**
 | 
						|
** See also: Found, NotFound, Distinct, MoveLt
 | 
						|
*/
 | 
						|
/* Opcode: MoveLt P1 P2 *
 | 
						|
**
 | 
						|
** Pop the top of the stack and use its value as a key.  Reposition
 | 
						|
** cursor P1 so that it points to the entry with the largest key that is
 | 
						|
** less than the key popped from the stack.
 | 
						|
** If there are no records less than than the key and P2
 | 
						|
** is not zero then an immediate jump to P2 is made.
 | 
						|
**
 | 
						|
** See also: MoveTo
 | 
						|
*/
 | 
						|
case OP_MoveLt:
 | 
						|
case OP_MoveTo: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pC;
 | 
						|
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pC = &p->aCsr[i];
 | 
						|
  if( pC->pCursor!=0 ){
 | 
						|
    int res, oc;
 | 
						|
    pC->nullRow = 0;
 | 
						|
    if( pTos->flags & MEM_Int ){
 | 
						|
      int iKey = intToKey(pTos->i);
 | 
						|
      if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
 | 
						|
        pC->movetoTarget = iKey;
 | 
						|
        pC->deferredMoveto = 1;
 | 
						|
        Release(pTos);
 | 
						|
        pTos--;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
 | 
						|
      pC->lastRecno = pTos->i;
 | 
						|
      pC->recnoIsValid = res==0;
 | 
						|
    }else{
 | 
						|
      Stringify(pTos);
 | 
						|
      sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
 | 
						|
      pC->recnoIsValid = 0;
 | 
						|
    }
 | 
						|
    pC->deferredMoveto = 0;
 | 
						|
    sqlite_search_count++;
 | 
						|
    oc = pOp->opcode;
 | 
						|
    if( oc==OP_MoveTo && res<0 ){
 | 
						|
      sqliteBtreeNext(pC->pCursor, &res);
 | 
						|
      pC->recnoIsValid = 0;
 | 
						|
      if( res && pOp->p2>0 ){
 | 
						|
        pc = pOp->p2 - 1;
 | 
						|
      }
 | 
						|
    }else if( oc==OP_MoveLt ){
 | 
						|
      if( res>=0 ){
 | 
						|
        sqliteBtreePrevious(pC->pCursor, &res);
 | 
						|
        pC->recnoIsValid = 0;
 | 
						|
      }else{
 | 
						|
        /* res might be negative because the table is empty.  Check to
 | 
						|
        ** see if this is the case.
 | 
						|
        */
 | 
						|
        int keysize;
 | 
						|
        res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
 | 
						|
      }
 | 
						|
      if( res && pOp->p2>0 ){
 | 
						|
        pc = pOp->p2 - 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Distinct P1 P2 *
 | 
						|
**
 | 
						|
** Use the top of the stack as a string key.  If a record with that key does
 | 
						|
** not exist in the table of cursor P1, then jump to P2.  If the record
 | 
						|
** does already exist, then fall thru.  The cursor is left pointing
 | 
						|
** at the record if it exists. The key is not popped from the stack.
 | 
						|
**
 | 
						|
** This operation is similar to NotFound except that this operation
 | 
						|
** does not pop the key from the stack.
 | 
						|
**
 | 
						|
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
 | 
						|
*/
 | 
						|
/* Opcode: Found P1 P2 *
 | 
						|
**
 | 
						|
** Use the top of the stack as a string key.  If a record with that key
 | 
						|
** does exist in table of P1, then jump to P2.  If the record
 | 
						|
** does not exist, then fall thru.  The cursor is left pointing
 | 
						|
** to the record if it exists.  The key is popped from the stack.
 | 
						|
**
 | 
						|
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
 | 
						|
*/
 | 
						|
/* Opcode: NotFound P1 P2 *
 | 
						|
**
 | 
						|
** Use the top of the stack as a string key.  If a record with that key
 | 
						|
** does not exist in table of P1, then jump to P2.  If the record
 | 
						|
** does exist, then fall thru.  The cursor is left pointing to the
 | 
						|
** record if it exists.  The key is popped from the stack.
 | 
						|
**
 | 
						|
** The difference between this operation and Distinct is that
 | 
						|
** Distinct does not pop the key from the stack.
 | 
						|
**
 | 
						|
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
 | 
						|
*/
 | 
						|
case OP_Distinct:
 | 
						|
case OP_NotFound:
 | 
						|
case OP_Found: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  int alreadyExists = 0;
 | 
						|
  Cursor *pC;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  if( (pC = &p->aCsr[i])->pCursor!=0 ){
 | 
						|
    int res, rx;
 | 
						|
    Stringify(pTos);
 | 
						|
    rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
 | 
						|
    alreadyExists = rx==SQLITE_OK && res==0;
 | 
						|
    pC->deferredMoveto = 0;
 | 
						|
  }
 | 
						|
  if( pOp->opcode==OP_Found ){
 | 
						|
    if( alreadyExists ) pc = pOp->p2 - 1;
 | 
						|
  }else{
 | 
						|
    if( !alreadyExists ) pc = pOp->p2 - 1;
 | 
						|
  }
 | 
						|
  if( pOp->opcode!=OP_Distinct ){
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IsUnique P1 P2 *
 | 
						|
**
 | 
						|
** The top of the stack is an integer record number.  Call this
 | 
						|
** record number R.  The next on the stack is an index key created
 | 
						|
** using MakeIdxKey.  Call it K.  This instruction pops R from the
 | 
						|
** stack but it leaves K unchanged.
 | 
						|
**
 | 
						|
** P1 is an index.  So all but the last four bytes of K are an
 | 
						|
** index string.  The last four bytes of K are a record number.
 | 
						|
**
 | 
						|
** This instruction asks if there is an entry in P1 where the
 | 
						|
** index string matches K but the record number is different
 | 
						|
** from R.  If there is no such entry, then there is an immediate
 | 
						|
** jump to P2.  If any entry does exist where the index string
 | 
						|
** matches K but the record number is not R, then the record
 | 
						|
** number for that entry is pushed onto the stack and control
 | 
						|
** falls through to the next instruction.
 | 
						|
**
 | 
						|
** See also: Distinct, NotFound, NotExists, Found
 | 
						|
*/
 | 
						|
case OP_IsUnique: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  BtCursor *pCrsr;
 | 
						|
  int R;
 | 
						|
 | 
						|
  /* Pop the value R off the top of the stack
 | 
						|
  */
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  Integerify(pTos);
 | 
						|
  R = pTos->i;
 | 
						|
  pTos--;
 | 
						|
  assert( i>=0 && i<=p->nCursor );
 | 
						|
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
 | 
						|
    int res, rc;
 | 
						|
    int v;         /* The record number on the P1 entry that matches K */
 | 
						|
    char *zKey;    /* The value of K */
 | 
						|
    int nKey;      /* Number of bytes in K */
 | 
						|
 | 
						|
    /* Make sure K is a string and make zKey point to K
 | 
						|
    */
 | 
						|
    Stringify(pNos);
 | 
						|
    zKey = pNos->z;
 | 
						|
    nKey = pNos->n;
 | 
						|
    assert( nKey >= 4 );
 | 
						|
 | 
						|
    /* Search for an entry in P1 where all but the last four bytes match K.
 | 
						|
    ** If there is no such entry, jump immediately to P2.
 | 
						|
    */
 | 
						|
    assert( p->aCsr[i].deferredMoveto==0 );
 | 
						|
    rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
 | 
						|
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
						|
    if( res<0 ){
 | 
						|
      rc = sqliteBtreeNext(pCrsr, &res);
 | 
						|
      if( res ){
 | 
						|
        pc = pOp->p2 - 1;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
 | 
						|
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
						|
    if( res>0 ){
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* At this point, pCrsr is pointing to an entry in P1 where all but
 | 
						|
    ** the last for bytes of the key match K.  Check to see if the last
 | 
						|
    ** four bytes of the key are different from R.  If the last four
 | 
						|
    ** bytes equal R then jump immediately to P2.
 | 
						|
    */
 | 
						|
    sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
 | 
						|
    v = keyToInt(v);
 | 
						|
    if( v==R ){
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* The last four bytes of the key are different from R.  Convert the
 | 
						|
    ** last four bytes of the key into an integer and push it onto the
 | 
						|
    ** stack.  (These bytes are the record number of an entry that
 | 
						|
    ** violates a UNIQUE constraint.)
 | 
						|
    */
 | 
						|
    pTos++;
 | 
						|
    pTos->i = v;
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: NotExists P1 P2 *
 | 
						|
**
 | 
						|
** Use the top of the stack as a integer key.  If a record with that key
 | 
						|
** does not exist in table of P1, then jump to P2.  If the record
 | 
						|
** does exist, then fall thru.  The cursor is left pointing to the
 | 
						|
** record if it exists.  The integer key is popped from the stack.
 | 
						|
**
 | 
						|
** The difference between this operation and NotFound is that this
 | 
						|
** operation assumes the key is an integer and NotFound assumes it
 | 
						|
** is a string.
 | 
						|
**
 | 
						|
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
 | 
						|
*/
 | 
						|
case OP_NotExists: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
 | 
						|
    int res, rx, iKey;
 | 
						|
    assert( pTos->flags & MEM_Int );
 | 
						|
    iKey = intToKey(pTos->i);
 | 
						|
    rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
 | 
						|
    p->aCsr[i].lastRecno = pTos->i;
 | 
						|
    p->aCsr[i].recnoIsValid = res==0;
 | 
						|
    p->aCsr[i].nullRow = 0;
 | 
						|
    if( rx!=SQLITE_OK || res!=0 ){
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
      p->aCsr[i].recnoIsValid = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: NewRecno P1 * *
 | 
						|
**
 | 
						|
** Get a new integer record number used as the key to a table.
 | 
						|
** The record number is not previously used as a key in the database
 | 
						|
** table that cursor P1 points to.  The new record number is pushed 
 | 
						|
** onto the stack.
 | 
						|
*/
 | 
						|
case OP_NewRecno: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  int v = 0;
 | 
						|
  Cursor *pC;
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  if( (pC = &p->aCsr[i])->pCursor==0 ){
 | 
						|
    v = 0;
 | 
						|
  }else{
 | 
						|
    /* The next rowid or record number (different terms for the same
 | 
						|
    ** thing) is obtained in a two-step algorithm.
 | 
						|
    **
 | 
						|
    ** First we attempt to find the largest existing rowid and add one
 | 
						|
    ** to that.  But if the largest existing rowid is already the maximum
 | 
						|
    ** positive integer, we have to fall through to the second
 | 
						|
    ** probabilistic algorithm
 | 
						|
    **
 | 
						|
    ** The second algorithm is to select a rowid at random and see if
 | 
						|
    ** it already exists in the table.  If it does not exist, we have
 | 
						|
    ** succeeded.  If the random rowid does exist, we select a new one
 | 
						|
    ** and try again, up to 1000 times.
 | 
						|
    **
 | 
						|
    ** For a table with less than 2 billion entries, the probability
 | 
						|
    ** of not finding a unused rowid is about 1.0e-300.  This is a 
 | 
						|
    ** non-zero probability, but it is still vanishingly small and should
 | 
						|
    ** never cause a problem.  You are much, much more likely to have a
 | 
						|
    ** hardware failure than for this algorithm to fail.
 | 
						|
    **
 | 
						|
    ** The analysis in the previous paragraph assumes that you have a good
 | 
						|
    ** source of random numbers.  Is a library function like lrand48()
 | 
						|
    ** good enough?  Maybe. Maybe not. It's hard to know whether there
 | 
						|
    ** might be subtle bugs is some implementations of lrand48() that
 | 
						|
    ** could cause problems. To avoid uncertainty, SQLite uses its own 
 | 
						|
    ** random number generator based on the RC4 algorithm.
 | 
						|
    **
 | 
						|
    ** To promote locality of reference for repetitive inserts, the
 | 
						|
    ** first few attempts at chosing a random rowid pick values just a little
 | 
						|
    ** larger than the previous rowid.  This has been shown experimentally
 | 
						|
    ** to double the speed of the COPY operation.
 | 
						|
    */
 | 
						|
    int res, rx, cnt, x;
 | 
						|
    cnt = 0;
 | 
						|
    if( !pC->useRandomRowid ){
 | 
						|
      if( pC->nextRowidValid ){
 | 
						|
        v = pC->nextRowid;
 | 
						|
      }else{
 | 
						|
        rx = sqliteBtreeLast(pC->pCursor, &res);
 | 
						|
        if( res ){
 | 
						|
          v = 1;
 | 
						|
        }else{
 | 
						|
          sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
 | 
						|
          v = keyToInt(v);
 | 
						|
          if( v==0x7fffffff ){
 | 
						|
            pC->useRandomRowid = 1;
 | 
						|
          }else{
 | 
						|
            v++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( v<0x7fffffff ){
 | 
						|
        pC->nextRowidValid = 1;
 | 
						|
        pC->nextRowid = v+1;
 | 
						|
      }else{
 | 
						|
        pC->nextRowidValid = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( pC->useRandomRowid ){
 | 
						|
      v = db->priorNewRowid;
 | 
						|
      cnt = 0;
 | 
						|
      do{
 | 
						|
        if( v==0 || cnt>2 ){
 | 
						|
          sqliteRandomness(sizeof(v), &v);
 | 
						|
          if( cnt<5 ) v &= 0xffffff;
 | 
						|
        }else{
 | 
						|
          unsigned char r;
 | 
						|
          sqliteRandomness(1, &r);
 | 
						|
          v += r + 1;
 | 
						|
        }
 | 
						|
        if( v==0 ) continue;
 | 
						|
        x = intToKey(v);
 | 
						|
        rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
 | 
						|
        cnt++;
 | 
						|
      }while( cnt<1000 && rx==SQLITE_OK && res==0 );
 | 
						|
      db->priorNewRowid = v;
 | 
						|
      if( rx==SQLITE_OK && res==0 ){
 | 
						|
        rc = SQLITE_FULL;
 | 
						|
        goto abort_due_to_error;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    pC->recnoIsValid = 0;
 | 
						|
    pC->deferredMoveto = 0;
 | 
						|
  }
 | 
						|
  pTos++;
 | 
						|
  pTos->i = v;
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: PutIntKey P1 P2 *
 | 
						|
**
 | 
						|
** Write an entry into the table of cursor P1.  A new entry is
 | 
						|
** created if it doesn't already exist or the data for an existing
 | 
						|
** entry is overwritten.  The data is the value on the top of the
 | 
						|
** stack.  The key is the next value down on the stack.  The key must
 | 
						|
** be an integer.  The stack is popped twice by this instruction.
 | 
						|
**
 | 
						|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
 | 
						|
** incremented (otherwise not).  If the OPFLAG_CSCHANGE flag is set,
 | 
						|
** then the current statement change count is incremented (otherwise not).
 | 
						|
** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
 | 
						|
** stored for subsequent return by the sqlite_last_insert_rowid() function
 | 
						|
** (otherwise it's unmodified).
 | 
						|
*/
 | 
						|
/* Opcode: PutStrKey P1 * *
 | 
						|
**
 | 
						|
** Write an entry into the table of cursor P1.  A new entry is
 | 
						|
** created if it doesn't already exist or the data for an existing
 | 
						|
** entry is overwritten.  The data is the value on the top of the
 | 
						|
** stack.  The key is the next value down on the stack.  The key must
 | 
						|
** be a string.  The stack is popped twice by this instruction.
 | 
						|
**
 | 
						|
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
 | 
						|
*/
 | 
						|
case OP_PutIntKey:
 | 
						|
case OP_PutStrKey: {
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pC;
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
 | 
						|
    char *zKey;
 | 
						|
    int nKey, iKey;
 | 
						|
    if( pOp->opcode==OP_PutStrKey ){
 | 
						|
      Stringify(pNos);
 | 
						|
      nKey = pNos->n;
 | 
						|
      zKey = pNos->z;
 | 
						|
    }else{
 | 
						|
      assert( pNos->flags & MEM_Int );
 | 
						|
      nKey = sizeof(int);
 | 
						|
      iKey = intToKey(pNos->i);
 | 
						|
      zKey = (char*)&iKey;
 | 
						|
      if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
 | 
						|
      if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
 | 
						|
      if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
 | 
						|
      if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
 | 
						|
        pC->nextRowidValid = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( pTos->flags & MEM_Null ){
 | 
						|
      pTos->z = 0;
 | 
						|
      pTos->n = 0;
 | 
						|
    }else{
 | 
						|
      assert( pTos->flags & MEM_Str );
 | 
						|
    }
 | 
						|
    if( pC->pseudoTable ){
 | 
						|
      /* PutStrKey does not work for pseudo-tables.
 | 
						|
      ** The following assert makes sure we are not trying to use
 | 
						|
      ** PutStrKey on a pseudo-table
 | 
						|
      */
 | 
						|
      assert( pOp->opcode==OP_PutIntKey );
 | 
						|
      sqliteFree(pC->pData);
 | 
						|
      pC->iKey = iKey;
 | 
						|
      pC->nData = pTos->n;
 | 
						|
      if( pTos->flags & MEM_Dyn ){
 | 
						|
        pC->pData = pTos->z;
 | 
						|
        pTos->flags = MEM_Null;
 | 
						|
      }else{
 | 
						|
        pC->pData = sqliteMallocRaw( pC->nData );
 | 
						|
        if( pC->pData ){
 | 
						|
          memcpy(pC->pData, pTos->z, pC->nData);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      pC->nullRow = 0;
 | 
						|
    }else{
 | 
						|
      rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
 | 
						|
    }
 | 
						|
    pC->recnoIsValid = 0;
 | 
						|
    pC->deferredMoveto = 0;
 | 
						|
  }
 | 
						|
  popStack(&pTos, 2);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Delete P1 P2 *
 | 
						|
**
 | 
						|
** Delete the record at which the P1 cursor is currently pointing.
 | 
						|
**
 | 
						|
** The cursor will be left pointing at either the next or the previous
 | 
						|
** record in the table. If it is left pointing at the next record, then
 | 
						|
** the next Next instruction will be a no-op.  Hence it is OK to delete
 | 
						|
** a record from within an Next loop.
 | 
						|
**
 | 
						|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
 | 
						|
** incremented (otherwise not).  If OPFLAG_CSCHANGE flag is set,
 | 
						|
** then the current statement change count is incremented (otherwise not).
 | 
						|
**
 | 
						|
** If P1 is a pseudo-table, then this instruction is a no-op.
 | 
						|
*/
 | 
						|
case OP_Delete: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pC;
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pC = &p->aCsr[i];
 | 
						|
  if( pC->pCursor!=0 ){
 | 
						|
    sqliteVdbeCursorMoveto(pC);
 | 
						|
    rc = sqliteBtreeDelete(pC->pCursor);
 | 
						|
    pC->nextRowidValid = 0;
 | 
						|
  }
 | 
						|
  if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
 | 
						|
  if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SetCounts * * *
 | 
						|
**
 | 
						|
** Called at end of statement.  Updates lsChange (last statement change count)
 | 
						|
** and resets csChange (current statement change count) to 0.
 | 
						|
*/
 | 
						|
case OP_SetCounts: {
 | 
						|
  db->lsChange=db->csChange;
 | 
						|
  db->csChange=0;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: KeyAsData P1 P2 *
 | 
						|
**
 | 
						|
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
 | 
						|
** off (if P2==0).  In key-as-data mode, the OP_Column opcode pulls
 | 
						|
** data off of the key rather than the data.  This is used for
 | 
						|
** processing compound selects.
 | 
						|
*/
 | 
						|
case OP_KeyAsData: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  p->aCsr[i].keyAsData = pOp->p2;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: RowData P1 * *
 | 
						|
**
 | 
						|
** Push onto the stack the complete row data for cursor P1.
 | 
						|
** There is no interpretation of the data.  It is just copied
 | 
						|
** onto the stack exactly as it is found in the database file.
 | 
						|
**
 | 
						|
** If the cursor is not pointing to a valid row, a NULL is pushed
 | 
						|
** onto the stack.
 | 
						|
*/
 | 
						|
/* Opcode: RowKey P1 * *
 | 
						|
**
 | 
						|
** Push onto the stack the complete row key for cursor P1.
 | 
						|
** There is no interpretation of the key.  It is just copied
 | 
						|
** onto the stack exactly as it is found in the database file.
 | 
						|
**
 | 
						|
** If the cursor is not pointing to a valid row, a NULL is pushed
 | 
						|
** onto the stack.
 | 
						|
*/
 | 
						|
case OP_RowKey:
 | 
						|
case OP_RowData: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pC;
 | 
						|
  int n;
 | 
						|
 | 
						|
  pTos++;
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pC = &p->aCsr[i];
 | 
						|
  if( pC->nullRow ){
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }else if( pC->pCursor!=0 ){
 | 
						|
    BtCursor *pCrsr = pC->pCursor;
 | 
						|
    sqliteVdbeCursorMoveto(pC);
 | 
						|
    if( pC->nullRow ){
 | 
						|
      pTos->flags = MEM_Null;
 | 
						|
      break;
 | 
						|
    }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
 | 
						|
      sqliteBtreeKeySize(pCrsr, &n);
 | 
						|
    }else{
 | 
						|
      sqliteBtreeDataSize(pCrsr, &n);
 | 
						|
    }
 | 
						|
    pTos->n = n;
 | 
						|
    if( n<=NBFS ){
 | 
						|
      pTos->flags = MEM_Str | MEM_Short;
 | 
						|
      pTos->z = pTos->zShort;
 | 
						|
    }else{
 | 
						|
      char *z = sqliteMallocRaw( n );
 | 
						|
      if( z==0 ) goto no_mem;
 | 
						|
      pTos->flags = MEM_Str | MEM_Dyn;
 | 
						|
      pTos->z = z;
 | 
						|
    }
 | 
						|
    if( pC->keyAsData || pOp->opcode==OP_RowKey ){
 | 
						|
      sqliteBtreeKey(pCrsr, 0, n, pTos->z);
 | 
						|
    }else{
 | 
						|
      sqliteBtreeData(pCrsr, 0, n, pTos->z);
 | 
						|
    }
 | 
						|
  }else if( pC->pseudoTable ){
 | 
						|
    pTos->n = pC->nData;
 | 
						|
    pTos->z = pC->pData;
 | 
						|
    pTos->flags = MEM_Str|MEM_Ephem;
 | 
						|
  }else{
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Column P1 P2 *
 | 
						|
**
 | 
						|
** Interpret the data that cursor P1 points to as
 | 
						|
** a structure built using the MakeRecord instruction.
 | 
						|
** (See the MakeRecord opcode for additional information about
 | 
						|
** the format of the data.)
 | 
						|
** Push onto the stack the value of the P2-th column contained
 | 
						|
** in the data.
 | 
						|
**
 | 
						|
** If the KeyAsData opcode has previously executed on this cursor,
 | 
						|
** then the field might be extracted from the key rather than the
 | 
						|
** data.
 | 
						|
**
 | 
						|
** If P1 is negative, then the record is stored on the stack rather
 | 
						|
** than in a table.  For P1==-1, the top of the stack is used.
 | 
						|
** For P1==-2, the next on the stack is used.  And so forth.  The
 | 
						|
** value pushed is always just a pointer into the record which is
 | 
						|
** stored further down on the stack.  The column value is not copied.
 | 
						|
*/
 | 
						|
case OP_Column: {
 | 
						|
  int amt, offset, end, payloadSize;
 | 
						|
  int i = pOp->p1;
 | 
						|
  int p2 = pOp->p2;
 | 
						|
  Cursor *pC;
 | 
						|
  char *zRec;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
  int idxWidth;
 | 
						|
  unsigned char aHdr[10];
 | 
						|
 | 
						|
  assert( i<p->nCursor );
 | 
						|
  pTos++;
 | 
						|
  if( i<0 ){
 | 
						|
    assert( &pTos[i]>=p->aStack );
 | 
						|
    assert( pTos[i].flags & MEM_Str );
 | 
						|
    zRec = pTos[i].z;
 | 
						|
    payloadSize = pTos[i].n;
 | 
						|
  }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
 | 
						|
    sqliteVdbeCursorMoveto(pC);
 | 
						|
    zRec = 0;
 | 
						|
    pCrsr = pC->pCursor;
 | 
						|
    if( pC->nullRow ){
 | 
						|
      payloadSize = 0;
 | 
						|
    }else if( pC->keyAsData ){
 | 
						|
      sqliteBtreeKeySize(pCrsr, &payloadSize);
 | 
						|
    }else{
 | 
						|
      sqliteBtreeDataSize(pCrsr, &payloadSize);
 | 
						|
    }
 | 
						|
  }else if( pC->pseudoTable ){
 | 
						|
    payloadSize = pC->nData;
 | 
						|
    zRec = pC->pData;
 | 
						|
    assert( payloadSize==0 || zRec!=0 );
 | 
						|
  }else{
 | 
						|
    payloadSize = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Figure out how many bytes in the column data and where the column
 | 
						|
  ** data begins.
 | 
						|
  */
 | 
						|
  if( payloadSize==0 ){
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
    break;
 | 
						|
  }else if( payloadSize<256 ){
 | 
						|
    idxWidth = 1;
 | 
						|
  }else if( payloadSize<65536 ){
 | 
						|
    idxWidth = 2;
 | 
						|
  }else{
 | 
						|
    idxWidth = 3;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Figure out where the requested column is stored and how big it is.
 | 
						|
  */
 | 
						|
  if( payloadSize < idxWidth*(p2+1) ){
 | 
						|
    rc = SQLITE_CORRUPT;
 | 
						|
    goto abort_due_to_error;
 | 
						|
  }
 | 
						|
  if( zRec ){
 | 
						|
    memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
 | 
						|
  }else if( pC->keyAsData ){
 | 
						|
    sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
 | 
						|
  }else{
 | 
						|
    sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
 | 
						|
  }
 | 
						|
  offset = aHdr[0];
 | 
						|
  end = aHdr[idxWidth];
 | 
						|
  if( idxWidth>1 ){
 | 
						|
    offset |= aHdr[1]<<8;
 | 
						|
    end |= aHdr[idxWidth+1]<<8;
 | 
						|
    if( idxWidth>2 ){
 | 
						|
      offset |= aHdr[2]<<16;
 | 
						|
      end |= aHdr[idxWidth+2]<<16;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  amt = end - offset;
 | 
						|
  if( amt<0 || offset<0 || end>payloadSize ){
 | 
						|
    rc = SQLITE_CORRUPT;
 | 
						|
    goto abort_due_to_error;
 | 
						|
  }
 | 
						|
 | 
						|
  /* amt and offset now hold the offset to the start of data and the
 | 
						|
  ** amount of data.  Go get the data and put it on the stack.
 | 
						|
  */
 | 
						|
  pTos->n = amt;
 | 
						|
  if( amt==0 ){
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }else if( zRec ){
 | 
						|
    pTos->flags = MEM_Str | MEM_Ephem;
 | 
						|
    pTos->z = &zRec[offset];
 | 
						|
  }else{
 | 
						|
    if( amt<=NBFS ){
 | 
						|
      pTos->flags = MEM_Str | MEM_Short;
 | 
						|
      pTos->z = pTos->zShort;
 | 
						|
    }else{
 | 
						|
      char *z = sqliteMallocRaw( amt );
 | 
						|
      if( z==0 ) goto no_mem;
 | 
						|
      pTos->flags = MEM_Str | MEM_Dyn;
 | 
						|
      pTos->z = z;
 | 
						|
    }
 | 
						|
    if( pC->keyAsData ){
 | 
						|
      sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
 | 
						|
    }else{
 | 
						|
      sqliteBtreeData(pCrsr, offset, amt, pTos->z);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Recno P1 * *
 | 
						|
**
 | 
						|
** Push onto the stack an integer which is the first 4 bytes of the
 | 
						|
** the key to the current entry in a sequential scan of the database
 | 
						|
** file P1.  The sequential scan should have been started using the 
 | 
						|
** Next opcode.
 | 
						|
*/
 | 
						|
case OP_Recno: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pC;
 | 
						|
  int v;
 | 
						|
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pC = &p->aCsr[i];
 | 
						|
  sqliteVdbeCursorMoveto(pC);
 | 
						|
  pTos++;
 | 
						|
  if( pC->recnoIsValid ){
 | 
						|
    v = pC->lastRecno;
 | 
						|
  }else if( pC->pseudoTable ){
 | 
						|
    v = keyToInt(pC->iKey);
 | 
						|
  }else if( pC->nullRow || pC->pCursor==0 ){
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
    break;
 | 
						|
  }else{
 | 
						|
    assert( pC->pCursor!=0 );
 | 
						|
    sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
 | 
						|
    v = keyToInt(v);
 | 
						|
  }
 | 
						|
  pTos->i = v;
 | 
						|
  pTos->flags = MEM_Int;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: FullKey P1 * *
 | 
						|
**
 | 
						|
** Extract the complete key from the record that cursor P1 is currently
 | 
						|
** pointing to and push the key onto the stack as a string.
 | 
						|
**
 | 
						|
** Compare this opcode to Recno.  The Recno opcode extracts the first
 | 
						|
** 4 bytes of the key and pushes those bytes onto the stack as an
 | 
						|
** integer.  This instruction pushes the entire key as a string.
 | 
						|
**
 | 
						|
** This opcode may not be used on a pseudo-table.
 | 
						|
*/
 | 
						|
case OP_FullKey: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
 | 
						|
  assert( p->aCsr[i].keyAsData );
 | 
						|
  assert( !p->aCsr[i].pseudoTable );
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pTos++;
 | 
						|
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
 | 
						|
    int amt;
 | 
						|
    char *z;
 | 
						|
 | 
						|
    sqliteVdbeCursorMoveto(&p->aCsr[i]);
 | 
						|
    sqliteBtreeKeySize(pCrsr, &amt);
 | 
						|
    if( amt<=0 ){
 | 
						|
      rc = SQLITE_CORRUPT;
 | 
						|
      goto abort_due_to_error;
 | 
						|
    }
 | 
						|
    if( amt>NBFS ){
 | 
						|
      z = sqliteMallocRaw( amt );
 | 
						|
      if( z==0 ) goto no_mem;
 | 
						|
      pTos->flags = MEM_Str | MEM_Dyn;
 | 
						|
    }else{
 | 
						|
      z = pTos->zShort;
 | 
						|
      pTos->flags = MEM_Str | MEM_Short;
 | 
						|
    }
 | 
						|
    sqliteBtreeKey(pCrsr, 0, amt, z);
 | 
						|
    pTos->z = z;
 | 
						|
    pTos->n = amt;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: NullRow P1 * *
 | 
						|
**
 | 
						|
** Move the cursor P1 to a null row.  Any OP_Column operations
 | 
						|
** that occur while the cursor is on the null row will always push 
 | 
						|
** a NULL onto the stack.
 | 
						|
*/
 | 
						|
case OP_NullRow: {
 | 
						|
  int i = pOp->p1;
 | 
						|
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  p->aCsr[i].nullRow = 1;
 | 
						|
  p->aCsr[i].recnoIsValid = 0;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Last P1 P2 *
 | 
						|
**
 | 
						|
** The next use of the Recno or Column or Next instruction for P1 
 | 
						|
** will refer to the last entry in the database table or index.
 | 
						|
** If the table or index is empty and P2>0, then jump immediately to P2.
 | 
						|
** If P2 is 0 or if the table or index is not empty, fall through
 | 
						|
** to the following instruction.
 | 
						|
*/
 | 
						|
case OP_Last: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pC;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pC = &p->aCsr[i];
 | 
						|
  if( (pCrsr = pC->pCursor)!=0 ){
 | 
						|
    int res;
 | 
						|
    rc = sqliteBtreeLast(pCrsr, &res);
 | 
						|
    pC->nullRow = res;
 | 
						|
    pC->deferredMoveto = 0;
 | 
						|
    if( res && pOp->p2>0 ){
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    pC->nullRow = 0;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Rewind P1 P2 *
 | 
						|
**
 | 
						|
** The next use of the Recno or Column or Next instruction for P1 
 | 
						|
** will refer to the first entry in the database table or index.
 | 
						|
** If the table or index is empty and P2>0, then jump immediately to P2.
 | 
						|
** If P2 is 0 or if the table or index is not empty, fall through
 | 
						|
** to the following instruction.
 | 
						|
*/
 | 
						|
case OP_Rewind: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Cursor *pC;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pC = &p->aCsr[i];
 | 
						|
  if( (pCrsr = pC->pCursor)!=0 ){
 | 
						|
    int res;
 | 
						|
    rc = sqliteBtreeFirst(pCrsr, &res);
 | 
						|
    pC->atFirst = res==0;
 | 
						|
    pC->nullRow = res;
 | 
						|
    pC->deferredMoveto = 0;
 | 
						|
    if( res && pOp->p2>0 ){
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    pC->nullRow = 0;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Next P1 P2 *
 | 
						|
**
 | 
						|
** Advance cursor P1 so that it points to the next key/data pair in its
 | 
						|
** table or index.  If there are no more key/value pairs then fall through
 | 
						|
** to the following instruction.  But if the cursor advance was successful,
 | 
						|
** jump immediately to P2.
 | 
						|
**
 | 
						|
** See also: Prev
 | 
						|
*/
 | 
						|
/* Opcode: Prev P1 P2 *
 | 
						|
**
 | 
						|
** Back up cursor P1 so that it points to the previous key/data pair in its
 | 
						|
** table or index.  If there is no previous key/value pairs then fall through
 | 
						|
** to the following instruction.  But if the cursor backup was successful,
 | 
						|
** jump immediately to P2.
 | 
						|
*/
 | 
						|
case OP_Prev:
 | 
						|
case OP_Next: {
 | 
						|
  Cursor *pC;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
						|
  pC = &p->aCsr[pOp->p1];
 | 
						|
  if( (pCrsr = pC->pCursor)!=0 ){
 | 
						|
    int res;
 | 
						|
    if( pC->nullRow ){
 | 
						|
      res = 1;
 | 
						|
    }else{
 | 
						|
      assert( pC->deferredMoveto==0 );
 | 
						|
      rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
 | 
						|
                                  sqliteBtreePrevious(pCrsr, &res);
 | 
						|
      pC->nullRow = res;
 | 
						|
    }
 | 
						|
    if( res==0 ){
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
      sqlite_search_count++;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    pC->nullRow = 1;
 | 
						|
  }
 | 
						|
  pC->recnoIsValid = 0;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IdxPut P1 P2 P3
 | 
						|
**
 | 
						|
** The top of the stack holds a SQL index key made using the
 | 
						|
** MakeIdxKey instruction.  This opcode writes that key into the
 | 
						|
** index P1.  Data for the entry is nil.
 | 
						|
**
 | 
						|
** If P2==1, then the key must be unique.  If the key is not unique,
 | 
						|
** the program aborts with a SQLITE_CONSTRAINT error and the database
 | 
						|
** is rolled back.  If P3 is not null, then it becomes part of the
 | 
						|
** error message returned with the SQLITE_CONSTRAINT.
 | 
						|
*/
 | 
						|
case OP_IdxPut: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  assert( pTos->flags & MEM_Str );
 | 
						|
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
 | 
						|
    int nKey = pTos->n;
 | 
						|
    const char *zKey = pTos->z;
 | 
						|
    if( pOp->p2 ){
 | 
						|
      int res, n;
 | 
						|
      assert( nKey >= 4 );
 | 
						|
      rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
 | 
						|
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
						|
      while( res!=0 ){
 | 
						|
        int c;
 | 
						|
        sqliteBtreeKeySize(pCrsr, &n);
 | 
						|
        if( n==nKey
 | 
						|
           && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
 | 
						|
           && c==0
 | 
						|
        ){
 | 
						|
          rc = SQLITE_CONSTRAINT;
 | 
						|
          if( pOp->p3 && pOp->p3[0] ){
 | 
						|
            sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
 | 
						|
          }
 | 
						|
          goto abort_due_to_error;
 | 
						|
        }
 | 
						|
        if( res<0 ){
 | 
						|
          sqliteBtreeNext(pCrsr, &res);
 | 
						|
          res = +1;
 | 
						|
        }else{
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
 | 
						|
    assert( p->aCsr[i].deferredMoveto==0 );
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IdxDelete P1 * *
 | 
						|
**
 | 
						|
** The top of the stack is an index key built using the MakeIdxKey opcode.
 | 
						|
** This opcode removes that entry from the index.
 | 
						|
*/
 | 
						|
case OP_IdxDelete: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  assert( pTos->flags & MEM_Str );
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
 | 
						|
    int rx, res;
 | 
						|
    rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
 | 
						|
    if( rx==SQLITE_OK && res==0 ){
 | 
						|
      rc = sqliteBtreeDelete(pCrsr);
 | 
						|
    }
 | 
						|
    assert( p->aCsr[i].deferredMoveto==0 );
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IdxRecno P1 * *
 | 
						|
**
 | 
						|
** Push onto the stack an integer which is the last 4 bytes of the
 | 
						|
** the key to the current entry in index P1.  These 4 bytes should
 | 
						|
** be the record number of the table entry to which this index entry
 | 
						|
** points.
 | 
						|
**
 | 
						|
** See also: Recno, MakeIdxKey.
 | 
						|
*/
 | 
						|
case OP_IdxRecno: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  pTos++;
 | 
						|
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
 | 
						|
    int v;
 | 
						|
    int sz;
 | 
						|
    assert( p->aCsr[i].deferredMoveto==0 );
 | 
						|
    sqliteBtreeKeySize(pCrsr, &sz);
 | 
						|
    if( sz<sizeof(u32) ){
 | 
						|
      pTos->flags = MEM_Null;
 | 
						|
    }else{
 | 
						|
      sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
 | 
						|
      v = keyToInt(v);
 | 
						|
      pTos->i = v;
 | 
						|
      pTos->flags = MEM_Int;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IdxGT P1 P2 *
 | 
						|
**
 | 
						|
** Compare the top of the stack against the key on the index entry that
 | 
						|
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
 | 
						|
** index entry.  If the index entry is greater than the top of the stack
 | 
						|
** then jump to P2.  Otherwise fall through to the next instruction.
 | 
						|
** In either case, the stack is popped once.
 | 
						|
*/
 | 
						|
/* Opcode: IdxGE P1 P2 *
 | 
						|
**
 | 
						|
** Compare the top of the stack against the key on the index entry that
 | 
						|
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
 | 
						|
** index entry.  If the index entry is greater than or equal to 
 | 
						|
** the top of the stack
 | 
						|
** then jump to P2.  Otherwise fall through to the next instruction.
 | 
						|
** In either case, the stack is popped once.
 | 
						|
*/
 | 
						|
/* Opcode: IdxLT P1 P2 *
 | 
						|
**
 | 
						|
** Compare the top of the stack against the key on the index entry that
 | 
						|
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
 | 
						|
** index entry.  If the index entry is less than the top of the stack
 | 
						|
** then jump to P2.  Otherwise fall through to the next instruction.
 | 
						|
** In either case, the stack is popped once.
 | 
						|
*/
 | 
						|
case OP_IdxLT:
 | 
						|
case OP_IdxGT:
 | 
						|
case OP_IdxGE: {
 | 
						|
  int i= pOp->p1;
 | 
						|
  BtCursor *pCrsr;
 | 
						|
 | 
						|
  assert( i>=0 && i<p->nCursor );
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
 | 
						|
    int res, rc;
 | 
						|
 
 | 
						|
    Stringify(pTos);
 | 
						|
    assert( p->aCsr[i].deferredMoveto==0 );
 | 
						|
    rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if( pOp->opcode==OP_IdxLT ){
 | 
						|
      res = -res;
 | 
						|
    }else if( pOp->opcode==OP_IdxGE ){
 | 
						|
      res++;
 | 
						|
    }
 | 
						|
    if( res>0 ){
 | 
						|
      pc = pOp->p2 - 1 ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IdxIsNull P1 P2 *
 | 
						|
**
 | 
						|
** The top of the stack contains an index entry such as might be generated
 | 
						|
** by the MakeIdxKey opcode.  This routine looks at the first P1 fields of
 | 
						|
** that key.  If any of the first P1 fields are NULL, then a jump is made
 | 
						|
** to address P2.  Otherwise we fall straight through.
 | 
						|
**
 | 
						|
** The index entry is always popped from the stack.
 | 
						|
*/
 | 
						|
case OP_IdxIsNull: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  int k, n;
 | 
						|
  const char *z;
 | 
						|
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  assert( pTos->flags & MEM_Str );
 | 
						|
  z = pTos->z;
 | 
						|
  n = pTos->n;
 | 
						|
  for(k=0; k<n && i>0; i--){
 | 
						|
    if( z[k]=='a' ){
 | 
						|
      pc = pOp->p2-1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    while( k<n && z[k] ){ k++; }
 | 
						|
    k++;
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Destroy P1 P2 *
 | 
						|
**
 | 
						|
** Delete an entire database table or index whose root page in the database
 | 
						|
** file is given by P1.
 | 
						|
**
 | 
						|
** The table being destroyed is in the main database file if P2==0.  If
 | 
						|
** P2==1 then the table to be clear is in the auxiliary database file
 | 
						|
** that is used to store tables create using CREATE TEMPORARY TABLE.
 | 
						|
**
 | 
						|
** See also: Clear
 | 
						|
*/
 | 
						|
case OP_Destroy: {
 | 
						|
  rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Clear P1 P2 *
 | 
						|
**
 | 
						|
** Delete all contents of the database table or index whose root page
 | 
						|
** in the database file is given by P1.  But, unlike Destroy, do not
 | 
						|
** remove the table or index from the database file.
 | 
						|
**
 | 
						|
** The table being clear is in the main database file if P2==0.  If
 | 
						|
** P2==1 then the table to be clear is in the auxiliary database file
 | 
						|
** that is used to store tables create using CREATE TEMPORARY TABLE.
 | 
						|
**
 | 
						|
** See also: Destroy
 | 
						|
*/
 | 
						|
case OP_Clear: {
 | 
						|
  rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: CreateTable * P2 P3
 | 
						|
**
 | 
						|
** Allocate a new table in the main database file if P2==0 or in the
 | 
						|
** auxiliary database file if P2==1.  Push the page number
 | 
						|
** for the root page of the new table onto the stack.
 | 
						|
**
 | 
						|
** The root page number is also written to a memory location that P3
 | 
						|
** points to.  This is the mechanism is used to write the root page
 | 
						|
** number into the parser's internal data structures that describe the
 | 
						|
** new table.
 | 
						|
**
 | 
						|
** The difference between a table and an index is this:  A table must
 | 
						|
** have a 4-byte integer key and can have arbitrary data.  An index
 | 
						|
** has an arbitrary key but no data.
 | 
						|
**
 | 
						|
** See also: CreateIndex
 | 
						|
*/
 | 
						|
/* Opcode: CreateIndex * P2 P3
 | 
						|
**
 | 
						|
** Allocate a new index in the main database file if P2==0 or in the
 | 
						|
** auxiliary database file if P2==1.  Push the page number of the
 | 
						|
** root page of the new index onto the stack.
 | 
						|
**
 | 
						|
** See documentation on OP_CreateTable for additional information.
 | 
						|
*/
 | 
						|
case OP_CreateIndex:
 | 
						|
case OP_CreateTable: {
 | 
						|
  int pgno;
 | 
						|
  assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
 | 
						|
  assert( pOp->p2>=0 && pOp->p2<db->nDb );
 | 
						|
  assert( db->aDb[pOp->p2].pBt!=0 );
 | 
						|
  if( pOp->opcode==OP_CreateTable ){
 | 
						|
    rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
 | 
						|
  }else{
 | 
						|
    rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
 | 
						|
  }
 | 
						|
  pTos++;
 | 
						|
  if( rc==SQLITE_OK ){
 | 
						|
    pTos->i = pgno;
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
    *(u32*)pOp->p3 = pgno;
 | 
						|
    pOp->p3 = 0;
 | 
						|
  }else{
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: IntegrityCk P1 P2 *
 | 
						|
**
 | 
						|
** Do an analysis of the currently open database.  Push onto the
 | 
						|
** stack the text of an error message describing any problems.
 | 
						|
** If there are no errors, push a "ok" onto the stack.
 | 
						|
**
 | 
						|
** P1 is the index of a set that contains the root page numbers
 | 
						|
** for all tables and indices in the main database file.  The set
 | 
						|
** is cleared by this opcode.  In other words, after this opcode
 | 
						|
** has executed, the set will be empty.
 | 
						|
**
 | 
						|
** If P2 is not zero, the check is done on the auxiliary database
 | 
						|
** file, not the main database file.
 | 
						|
**
 | 
						|
** This opcode is used for testing purposes only.
 | 
						|
*/
 | 
						|
case OP_IntegrityCk: {
 | 
						|
  int nRoot;
 | 
						|
  int *aRoot;
 | 
						|
  int iSet = pOp->p1;
 | 
						|
  Set *pSet;
 | 
						|
  int j;
 | 
						|
  HashElem *i;
 | 
						|
  char *z;
 | 
						|
 | 
						|
  assert( iSet>=0 && iSet<p->nSet );
 | 
						|
  pTos++;
 | 
						|
  pSet = &p->aSet[iSet];
 | 
						|
  nRoot = sqliteHashCount(&pSet->hash);
 | 
						|
  aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
 | 
						|
  if( aRoot==0 ) goto no_mem;
 | 
						|
  for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
 | 
						|
    toInt((char*)sqliteHashKey(i), &aRoot[j]);
 | 
						|
  }
 | 
						|
  aRoot[j] = 0;
 | 
						|
  sqliteHashClear(&pSet->hash);
 | 
						|
  pSet->prev = 0;
 | 
						|
  z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
 | 
						|
  if( z==0 || z[0]==0 ){
 | 
						|
    if( z ) sqliteFree(z);
 | 
						|
    pTos->z = "ok";
 | 
						|
    pTos->n = 3;
 | 
						|
    pTos->flags = MEM_Str | MEM_Static;
 | 
						|
  }else{
 | 
						|
    pTos->z = z;
 | 
						|
    pTos->n = strlen(z) + 1;
 | 
						|
    pTos->flags = MEM_Str | MEM_Dyn;
 | 
						|
  }
 | 
						|
  sqliteFree(aRoot);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ListWrite * * *
 | 
						|
**
 | 
						|
** Write the integer on the top of the stack
 | 
						|
** into the temporary storage list.
 | 
						|
*/
 | 
						|
case OP_ListWrite: {
 | 
						|
  Keylist *pKeylist;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  pKeylist = p->pList;
 | 
						|
  if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
 | 
						|
    pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
 | 
						|
    if( pKeylist==0 ) goto no_mem;
 | 
						|
    pKeylist->nKey = 1000;
 | 
						|
    pKeylist->nRead = 0;
 | 
						|
    pKeylist->nUsed = 0;
 | 
						|
    pKeylist->pNext = p->pList;
 | 
						|
    p->pList = pKeylist;
 | 
						|
  }
 | 
						|
  Integerify(pTos);
 | 
						|
  pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ListRewind * * *
 | 
						|
**
 | 
						|
** Rewind the temporary buffer back to the beginning.
 | 
						|
*/
 | 
						|
case OP_ListRewind: {
 | 
						|
  /* What this opcode codes, really, is reverse the order of the
 | 
						|
  ** linked list of Keylist structures so that they are read out
 | 
						|
  ** in the same order that they were read in. */
 | 
						|
  Keylist *pRev, *pTop;
 | 
						|
  pRev = 0;
 | 
						|
  while( p->pList ){
 | 
						|
    pTop = p->pList;
 | 
						|
    p->pList = pTop->pNext;
 | 
						|
    pTop->pNext = pRev;
 | 
						|
    pRev = pTop;
 | 
						|
  }
 | 
						|
  p->pList = pRev;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ListRead * P2 *
 | 
						|
**
 | 
						|
** Attempt to read an integer from the temporary storage buffer
 | 
						|
** and push it onto the stack.  If the storage buffer is empty, 
 | 
						|
** push nothing but instead jump to P2.
 | 
						|
*/
 | 
						|
case OP_ListRead: {
 | 
						|
  Keylist *pKeylist;
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  pKeylist = p->pList;
 | 
						|
  if( pKeylist!=0 ){
 | 
						|
    assert( pKeylist->nRead>=0 );
 | 
						|
    assert( pKeylist->nRead<pKeylist->nUsed );
 | 
						|
    assert( pKeylist->nRead<pKeylist->nKey );
 | 
						|
    pTos++;
 | 
						|
    pTos->i = pKeylist->aKey[pKeylist->nRead++];
 | 
						|
    pTos->flags = MEM_Int;
 | 
						|
    if( pKeylist->nRead>=pKeylist->nUsed ){
 | 
						|
      p->pList = pKeylist->pNext;
 | 
						|
      sqliteFree(pKeylist);
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ListReset * * *
 | 
						|
**
 | 
						|
** Reset the temporary storage buffer so that it holds nothing.
 | 
						|
*/
 | 
						|
case OP_ListReset: {
 | 
						|
  if( p->pList ){
 | 
						|
    sqliteVdbeKeylistFree(p->pList);
 | 
						|
    p->pList = 0;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ListPush * * * 
 | 
						|
**
 | 
						|
** Save the current Vdbe list such that it can be restored by a ListPop
 | 
						|
** opcode. The list is empty after this is executed.
 | 
						|
*/
 | 
						|
case OP_ListPush: {
 | 
						|
  p->keylistStackDepth++;
 | 
						|
  assert(p->keylistStackDepth > 0);
 | 
						|
  p->keylistStack = sqliteRealloc(p->keylistStack, 
 | 
						|
          sizeof(Keylist *) * p->keylistStackDepth);
 | 
						|
  if( p->keylistStack==0 ) goto no_mem;
 | 
						|
  p->keylistStack[p->keylistStackDepth - 1] = p->pList;
 | 
						|
  p->pList = 0;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ListPop * * * 
 | 
						|
**
 | 
						|
** Restore the Vdbe list to the state it was in when ListPush was last
 | 
						|
** executed.
 | 
						|
*/
 | 
						|
case OP_ListPop: {
 | 
						|
  assert(p->keylistStackDepth > 0);
 | 
						|
  p->keylistStackDepth--;
 | 
						|
  sqliteVdbeKeylistFree(p->pList);
 | 
						|
  p->pList = p->keylistStack[p->keylistStackDepth];
 | 
						|
  p->keylistStack[p->keylistStackDepth] = 0;
 | 
						|
  if( p->keylistStackDepth == 0 ){
 | 
						|
    sqliteFree(p->keylistStack);
 | 
						|
    p->keylistStack = 0;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ContextPush * * * 
 | 
						|
**
 | 
						|
** Save the current Vdbe context such that it can be restored by a ContextPop
 | 
						|
** opcode. The context stores the last insert row id, the last statement change
 | 
						|
** count, and the current statement change count.
 | 
						|
*/
 | 
						|
case OP_ContextPush: {
 | 
						|
  p->contextStackDepth++;
 | 
						|
  assert(p->contextStackDepth > 0);
 | 
						|
  p->contextStack = sqliteRealloc(p->contextStack, 
 | 
						|
          sizeof(Context) * p->contextStackDepth);
 | 
						|
  if( p->contextStack==0 ) goto no_mem;
 | 
						|
  p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
 | 
						|
  p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
 | 
						|
  p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: ContextPop * * * 
 | 
						|
**
 | 
						|
** Restore the Vdbe context to the state it was in when contextPush was last
 | 
						|
** executed. The context stores the last insert row id, the last statement
 | 
						|
** change count, and the current statement change count.
 | 
						|
*/
 | 
						|
case OP_ContextPop: {
 | 
						|
  assert(p->contextStackDepth > 0);
 | 
						|
  p->contextStackDepth--;
 | 
						|
  p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
 | 
						|
  p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
 | 
						|
  p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
 | 
						|
  if( p->contextStackDepth == 0 ){
 | 
						|
    sqliteFree(p->contextStack);
 | 
						|
    p->contextStack = 0;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SortPut * * *
 | 
						|
**
 | 
						|
** The TOS is the key and the NOS is the data.  Pop both from the stack
 | 
						|
** and put them on the sorter.  The key and data should have been
 | 
						|
** made using SortMakeKey and SortMakeRec, respectively.
 | 
						|
*/
 | 
						|
case OP_SortPut: {
 | 
						|
  Mem *pNos = &pTos[-1];
 | 
						|
  Sorter *pSorter;
 | 
						|
  assert( pNos>=p->aStack );
 | 
						|
  if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
 | 
						|
  pSorter = sqliteMallocRaw( sizeof(Sorter) );
 | 
						|
  if( pSorter==0 ) goto no_mem;
 | 
						|
  pSorter->pNext = p->pSort;
 | 
						|
  p->pSort = pSorter;
 | 
						|
  assert( pTos->flags & MEM_Dyn );
 | 
						|
  pSorter->nKey = pTos->n;
 | 
						|
  pSorter->zKey = pTos->z;
 | 
						|
  assert( pNos->flags & MEM_Dyn );
 | 
						|
  pSorter->nData = pNos->n;
 | 
						|
  pSorter->pData = pNos->z;
 | 
						|
  pTos -= 2;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SortMakeRec P1 * *
 | 
						|
**
 | 
						|
** The top P1 elements are the arguments to a callback.  Form these
 | 
						|
** elements into a single data entry that can be stored on a sorter
 | 
						|
** using SortPut and later fed to a callback using SortCallback.
 | 
						|
*/
 | 
						|
case OP_SortMakeRec: {
 | 
						|
  char *z;
 | 
						|
  char **azArg;
 | 
						|
  int nByte;
 | 
						|
  int nField;
 | 
						|
  int i;
 | 
						|
  Mem *pRec;
 | 
						|
 | 
						|
  nField = pOp->p1;
 | 
						|
  pRec = &pTos[1-nField];
 | 
						|
  assert( pRec>=p->aStack );
 | 
						|
  nByte = 0;
 | 
						|
  for(i=0; i<nField; i++, pRec++){
 | 
						|
    if( (pRec->flags & MEM_Null)==0 ){
 | 
						|
      Stringify(pRec);
 | 
						|
      nByte += pRec->n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  nByte += sizeof(char*)*(nField+1);
 | 
						|
  azArg = sqliteMallocRaw( nByte );
 | 
						|
  if( azArg==0 ) goto no_mem;
 | 
						|
  z = (char*)&azArg[nField+1];
 | 
						|
  for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
 | 
						|
    if( pRec->flags & MEM_Null ){
 | 
						|
      azArg[i] = 0;
 | 
						|
    }else{
 | 
						|
      azArg[i] = z;
 | 
						|
      memcpy(z, pRec->z, pRec->n);
 | 
						|
      z += pRec->n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  popStack(&pTos, nField);
 | 
						|
  pTos++;
 | 
						|
  pTos->n = nByte;
 | 
						|
  pTos->z = (char*)azArg;
 | 
						|
  pTos->flags = MEM_Str | MEM_Dyn;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SortMakeKey * * P3
 | 
						|
**
 | 
						|
** Convert the top few entries of the stack into a sort key.  The
 | 
						|
** number of stack entries consumed is the number of characters in 
 | 
						|
** the string P3.  One character from P3 is prepended to each entry.
 | 
						|
** The first character of P3 is prepended to the element lowest in
 | 
						|
** the stack and the last character of P3 is prepended to the top of
 | 
						|
** the stack.  All stack entries are separated by a \000 character
 | 
						|
** in the result.  The whole key is terminated by two \000 characters
 | 
						|
** in a row.
 | 
						|
**
 | 
						|
** "N" is substituted in place of the P3 character for NULL values.
 | 
						|
**
 | 
						|
** See also the MakeKey and MakeIdxKey opcodes.
 | 
						|
*/
 | 
						|
case OP_SortMakeKey: {
 | 
						|
  char *zNewKey;
 | 
						|
  int nByte;
 | 
						|
  int nField;
 | 
						|
  int i, j, k;
 | 
						|
  Mem *pRec;
 | 
						|
 | 
						|
  nField = strlen(pOp->p3);
 | 
						|
  pRec = &pTos[1-nField];
 | 
						|
  nByte = 1;
 | 
						|
  for(i=0; i<nField; i++, pRec++){
 | 
						|
    if( pRec->flags & MEM_Null ){
 | 
						|
      nByte += 2;
 | 
						|
    }else{
 | 
						|
      Stringify(pRec);
 | 
						|
      nByte += pRec->n+2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  zNewKey = sqliteMallocRaw( nByte );
 | 
						|
  if( zNewKey==0 ) goto no_mem;
 | 
						|
  j = 0;
 | 
						|
  k = 0;
 | 
						|
  for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
 | 
						|
    if( pRec->flags & MEM_Null ){
 | 
						|
      zNewKey[j++] = 'N';
 | 
						|
      zNewKey[j++] = 0;
 | 
						|
      k++;
 | 
						|
    }else{
 | 
						|
      zNewKey[j++] = pOp->p3[k++];
 | 
						|
      memcpy(&zNewKey[j], pRec->z, pRec->n-1);
 | 
						|
      j += pRec->n-1;
 | 
						|
      zNewKey[j++] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  zNewKey[j] = 0;
 | 
						|
  assert( j<nByte );
 | 
						|
  popStack(&pTos, nField);
 | 
						|
  pTos++;
 | 
						|
  pTos->n = nByte;
 | 
						|
  pTos->flags = MEM_Str|MEM_Dyn;
 | 
						|
  pTos->z = zNewKey;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Sort * * *
 | 
						|
**
 | 
						|
** Sort all elements on the sorter.  The algorithm is a
 | 
						|
** mergesort.
 | 
						|
*/
 | 
						|
case OP_Sort: {
 | 
						|
  int i;
 | 
						|
  Sorter *pElem;
 | 
						|
  Sorter *apSorter[NSORT];
 | 
						|
  for(i=0; i<NSORT; i++){
 | 
						|
    apSorter[i] = 0;
 | 
						|
  }
 | 
						|
  while( p->pSort ){
 | 
						|
    pElem = p->pSort;
 | 
						|
    p->pSort = pElem->pNext;
 | 
						|
    pElem->pNext = 0;
 | 
						|
    for(i=0; i<NSORT-1; i++){
 | 
						|
    if( apSorter[i]==0 ){
 | 
						|
        apSorter[i] = pElem;
 | 
						|
        break;
 | 
						|
      }else{
 | 
						|
        pElem = Merge(apSorter[i], pElem);
 | 
						|
        apSorter[i] = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( i>=NSORT-1 ){
 | 
						|
      apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pElem = 0;
 | 
						|
  for(i=0; i<NSORT; i++){
 | 
						|
    pElem = Merge(apSorter[i], pElem);
 | 
						|
  }
 | 
						|
  p->pSort = pElem;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SortNext * P2 *
 | 
						|
**
 | 
						|
** Push the data for the topmost element in the sorter onto the
 | 
						|
** stack, then remove the element from the sorter.  If the sorter
 | 
						|
** is empty, push nothing on the stack and instead jump immediately 
 | 
						|
** to instruction P2.
 | 
						|
*/
 | 
						|
case OP_SortNext: {
 | 
						|
  Sorter *pSorter = p->pSort;
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  if( pSorter!=0 ){
 | 
						|
    p->pSort = pSorter->pNext;
 | 
						|
    pTos++;
 | 
						|
    pTos->z = pSorter->pData;
 | 
						|
    pTos->n = pSorter->nData;
 | 
						|
    pTos->flags = MEM_Str|MEM_Dyn;
 | 
						|
    sqliteFree(pSorter->zKey);
 | 
						|
    sqliteFree(pSorter);
 | 
						|
  }else{
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SortCallback P1 * *
 | 
						|
**
 | 
						|
** The top of the stack contains a callback record built using
 | 
						|
** the SortMakeRec operation with the same P1 value as this
 | 
						|
** instruction.  Pop this record from the stack and invoke the
 | 
						|
** callback on it.
 | 
						|
*/
 | 
						|
case OP_SortCallback: {
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  assert( pTos->flags & MEM_Str );
 | 
						|
  p->nCallback++;
 | 
						|
  p->pc = pc+1;
 | 
						|
  p->azResColumn = (char**)pTos->z;
 | 
						|
  assert( p->nResColumn==pOp->p1 );
 | 
						|
  p->popStack = 1;
 | 
						|
  p->pTos = pTos;
 | 
						|
  return SQLITE_ROW;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SortReset * * *
 | 
						|
**
 | 
						|
** Remove any elements that remain on the sorter.
 | 
						|
*/
 | 
						|
case OP_SortReset: {
 | 
						|
  sqliteVdbeSorterReset(p);
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: FileOpen * * P3
 | 
						|
**
 | 
						|
** Open the file named by P3 for reading using the FileRead opcode.
 | 
						|
** If P3 is "stdin" then open standard input for reading.
 | 
						|
*/
 | 
						|
case OP_FileOpen: {
 | 
						|
  assert( pOp->p3!=0 );
 | 
						|
  if( p->pFile ){
 | 
						|
    if( p->pFile!=stdin ) fclose(p->pFile);
 | 
						|
    p->pFile = 0;
 | 
						|
  }
 | 
						|
  if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
 | 
						|
    p->pFile = stdin;
 | 
						|
  }else{
 | 
						|
    p->pFile = fopen(pOp->p3, "r");
 | 
						|
  }
 | 
						|
  if( p->pFile==0 ){
 | 
						|
    sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
 | 
						|
    rc = SQLITE_ERROR;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: FileRead P1 P2 P3
 | 
						|
**
 | 
						|
** Read a single line of input from the open file (the file opened using
 | 
						|
** FileOpen).  If we reach end-of-file, jump immediately to P2.  If
 | 
						|
** we are able to get another line, split the line apart using P3 as
 | 
						|
** a delimiter.  There should be P1 fields.  If the input line contains
 | 
						|
** more than P1 fields, ignore the excess.  If the input line contains
 | 
						|
** fewer than P1 fields, assume the remaining fields contain NULLs.
 | 
						|
**
 | 
						|
** Input ends if a line consists of just "\.".  A field containing only
 | 
						|
** "\N" is a null field.  The backslash \ character can be used be used
 | 
						|
** to escape newlines or the delimiter.
 | 
						|
*/
 | 
						|
case OP_FileRead: {
 | 
						|
  int n, eol, nField, i, c, nDelim;
 | 
						|
  char *zDelim, *z;
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  if( p->pFile==0 ) goto fileread_jump;
 | 
						|
  nField = pOp->p1;
 | 
						|
  if( nField<=0 ) goto fileread_jump;
 | 
						|
  if( nField!=p->nField || p->azField==0 ){
 | 
						|
    char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
 | 
						|
    if( azField==0 ){ goto no_mem; }
 | 
						|
    p->azField = azField;
 | 
						|
    p->nField = nField;
 | 
						|
  }
 | 
						|
  n = 0;
 | 
						|
  eol = 0;
 | 
						|
  while( eol==0 ){
 | 
						|
    if( p->zLine==0 || n+200>p->nLineAlloc ){
 | 
						|
      char *zLine;
 | 
						|
      p->nLineAlloc = p->nLineAlloc*2 + 300;
 | 
						|
      zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
 | 
						|
      if( zLine==0 ){
 | 
						|
        p->nLineAlloc = 0;
 | 
						|
        sqliteFree(p->zLine);
 | 
						|
        p->zLine = 0;
 | 
						|
        goto no_mem;
 | 
						|
      }
 | 
						|
      p->zLine = zLine;
 | 
						|
    }
 | 
						|
    if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
 | 
						|
      eol = 1;
 | 
						|
      p->zLine[n] = 0;
 | 
						|
    }else{
 | 
						|
      int c;
 | 
						|
      while( (c = p->zLine[n])!=0 ){
 | 
						|
        if( c=='\\' ){
 | 
						|
          if( p->zLine[n+1]==0 ) break;
 | 
						|
          n += 2;
 | 
						|
        }else if( c=='\n' ){
 | 
						|
          p->zLine[n] = 0;
 | 
						|
          eol = 1;
 | 
						|
          break;
 | 
						|
        }else{
 | 
						|
          n++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( n==0 ) goto fileread_jump;
 | 
						|
  z = p->zLine;
 | 
						|
  if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
 | 
						|
    goto fileread_jump;
 | 
						|
  }
 | 
						|
  zDelim = pOp->p3;
 | 
						|
  if( zDelim==0 ) zDelim = "\t";
 | 
						|
  c = zDelim[0];
 | 
						|
  nDelim = strlen(zDelim);
 | 
						|
  p->azField[0] = z;
 | 
						|
  for(i=1; *z!=0 && i<=nField; i++){
 | 
						|
    int from, to;
 | 
						|
    from = to = 0;
 | 
						|
    if( z[0]=='\\' && z[1]=='N' 
 | 
						|
       && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
 | 
						|
      if( i<=nField ) p->azField[i-1] = 0;
 | 
						|
      z += 2 + nDelim;
 | 
						|
      if( i<nField ) p->azField[i] = z;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    while( z[from] ){
 | 
						|
      if( z[from]=='\\' && z[from+1]!=0 ){
 | 
						|
        int tx = z[from+1];
 | 
						|
        switch( tx ){
 | 
						|
          case 'b':  tx = '\b'; break;
 | 
						|
          case 'f':  tx = '\f'; break;
 | 
						|
          case 'n':  tx = '\n'; break;
 | 
						|
          case 'r':  tx = '\r'; break;
 | 
						|
          case 't':  tx = '\t'; break;
 | 
						|
          case 'v':  tx = '\v'; break;
 | 
						|
          default:   break;
 | 
						|
        }
 | 
						|
        z[to++] = tx;
 | 
						|
        from += 2;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
 | 
						|
      z[to++] = z[from++];
 | 
						|
    }
 | 
						|
    if( z[from] ){
 | 
						|
      z[to] = 0;
 | 
						|
      z += from + nDelim;
 | 
						|
      if( i<nField ) p->azField[i] = z;
 | 
						|
    }else{
 | 
						|
      z[to] = 0;
 | 
						|
      z = "";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  while( i<nField ){
 | 
						|
    p->azField[i++] = 0;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
 | 
						|
  /* If we reach end-of-file, or if anything goes wrong, jump here.
 | 
						|
  ** This code will cause a jump to P2 */
 | 
						|
fileread_jump:
 | 
						|
  pc = pOp->p2 - 1;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: FileColumn P1 * *
 | 
						|
**
 | 
						|
** Push onto the stack the P1-th column of the most recently read line
 | 
						|
** from the input file.
 | 
						|
*/
 | 
						|
case OP_FileColumn: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  char *z;
 | 
						|
  assert( i>=0 && i<p->nField );
 | 
						|
  if( p->azField ){
 | 
						|
    z = p->azField[i];
 | 
						|
  }else{
 | 
						|
    z = 0;
 | 
						|
  }
 | 
						|
  pTos++;
 | 
						|
  if( z ){
 | 
						|
    pTos->n = strlen(z) + 1;
 | 
						|
    pTos->z = z;
 | 
						|
    pTos->flags = MEM_Str | MEM_Ephem;
 | 
						|
  }else{
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: MemStore P1 P2 *
 | 
						|
**
 | 
						|
** Write the top of the stack into memory location P1.
 | 
						|
** P1 should be a small integer since space is allocated
 | 
						|
** for all memory locations between 0 and P1 inclusive.
 | 
						|
**
 | 
						|
** After the data is stored in the memory location, the
 | 
						|
** stack is popped once if P2 is 1.  If P2 is zero, then
 | 
						|
** the original data remains on the stack.
 | 
						|
*/
 | 
						|
case OP_MemStore: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Mem *pMem;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( i>=p->nMem ){
 | 
						|
    int nOld = p->nMem;
 | 
						|
    Mem *aMem;
 | 
						|
    p->nMem = i + 5;
 | 
						|
    aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
 | 
						|
    if( aMem==0 ) goto no_mem;
 | 
						|
    if( aMem!=p->aMem ){
 | 
						|
      int j;
 | 
						|
      for(j=0; j<nOld; j++){
 | 
						|
        if( aMem[j].flags & MEM_Short ){
 | 
						|
          aMem[j].z = aMem[j].zShort;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    p->aMem = aMem;
 | 
						|
    if( nOld<p->nMem ){
 | 
						|
      memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Deephemeralize(pTos);
 | 
						|
  pMem = &p->aMem[i];
 | 
						|
  Release(pMem);
 | 
						|
  *pMem = *pTos;
 | 
						|
  if( pMem->flags & MEM_Dyn ){
 | 
						|
    if( pOp->p2 ){
 | 
						|
      pTos->flags = MEM_Null;
 | 
						|
    }else{
 | 
						|
      pMem->z = sqliteMallocRaw( pMem->n );
 | 
						|
      if( pMem->z==0 ) goto no_mem;
 | 
						|
      memcpy(pMem->z, pTos->z, pMem->n);
 | 
						|
    }
 | 
						|
  }else if( pMem->flags & MEM_Short ){
 | 
						|
    pMem->z = pMem->zShort;
 | 
						|
  }
 | 
						|
  if( pOp->p2 ){
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: MemLoad P1 * *
 | 
						|
**
 | 
						|
** Push a copy of the value in memory location P1 onto the stack.
 | 
						|
**
 | 
						|
** If the value is a string, then the value pushed is a pointer to
 | 
						|
** the string that is stored in the memory location.  If the memory
 | 
						|
** location is subsequently changed (using OP_MemStore) then the
 | 
						|
** value pushed onto the stack will change too.
 | 
						|
*/
 | 
						|
case OP_MemLoad: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  assert( i>=0 && i<p->nMem );
 | 
						|
  pTos++;
 | 
						|
  memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
 | 
						|
  if( pTos->flags & MEM_Str ){
 | 
						|
    pTos->flags |= MEM_Ephem;
 | 
						|
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: MemIncr P1 P2 *
 | 
						|
**
 | 
						|
** Increment the integer valued memory cell P1 by 1.  If P2 is not zero
 | 
						|
** and the result after the increment is greater than zero, then jump
 | 
						|
** to P2.
 | 
						|
**
 | 
						|
** This instruction throws an error if the memory cell is not initially
 | 
						|
** an integer.
 | 
						|
*/
 | 
						|
case OP_MemIncr: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  Mem *pMem;
 | 
						|
  assert( i>=0 && i<p->nMem );
 | 
						|
  pMem = &p->aMem[i];
 | 
						|
  assert( pMem->flags==MEM_Int );
 | 
						|
  pMem->i++;
 | 
						|
  if( pOp->p2>0 && pMem->i>0 ){
 | 
						|
     pc = pOp->p2 - 1;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AggReset * P2 *
 | 
						|
**
 | 
						|
** Reset the aggregator so that it no longer contains any data.
 | 
						|
** Future aggregator elements will contain P2 values each.
 | 
						|
*/
 | 
						|
case OP_AggReset: {
 | 
						|
  sqliteVdbeAggReset(&p->agg);
 | 
						|
  p->agg.nMem = pOp->p2;
 | 
						|
  p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
 | 
						|
  if( p->agg.apFunc==0 ) goto no_mem;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AggInit * P2 P3
 | 
						|
**
 | 
						|
** Initialize the function parameters for an aggregate function.
 | 
						|
** The aggregate will operate out of aggregate column P2.
 | 
						|
** P3 is a pointer to the FuncDef structure for the function.
 | 
						|
*/
 | 
						|
case OP_AggInit: {
 | 
						|
  int i = pOp->p2;
 | 
						|
  assert( i>=0 && i<p->agg.nMem );
 | 
						|
  p->agg.apFunc[i] = (FuncDef*)pOp->p3;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AggFunc * P2 P3
 | 
						|
**
 | 
						|
** Execute the step function for an aggregate.  The
 | 
						|
** function has P2 arguments.  P3 is a pointer to the FuncDef
 | 
						|
** structure that specifies the function.
 | 
						|
**
 | 
						|
** The top of the stack must be an integer which is the index of
 | 
						|
** the aggregate column that corresponds to this aggregate function.
 | 
						|
** Ideally, this index would be another parameter, but there are
 | 
						|
** no free parameters left.  The integer is popped from the stack.
 | 
						|
*/
 | 
						|
case OP_AggFunc: {
 | 
						|
  int n = pOp->p2;
 | 
						|
  int i;
 | 
						|
  Mem *pMem, *pRec;
 | 
						|
  char **azArgv = p->zArgv;
 | 
						|
  sqlite_func ctx;
 | 
						|
 | 
						|
  assert( n>=0 );
 | 
						|
  assert( pTos->flags==MEM_Int );
 | 
						|
  pRec = &pTos[-n];
 | 
						|
  assert( pRec>=p->aStack );
 | 
						|
  for(i=0; i<n; i++, pRec++){
 | 
						|
    if( pRec->flags & MEM_Null ){
 | 
						|
      azArgv[i] = 0;
 | 
						|
    }else{
 | 
						|
      Stringify(pRec);
 | 
						|
      azArgv[i] = pRec->z;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  i = pTos->i;
 | 
						|
  assert( i>=0 && i<p->agg.nMem );
 | 
						|
  ctx.pFunc = (FuncDef*)pOp->p3;
 | 
						|
  pMem = &p->agg.pCurrent->aMem[i];
 | 
						|
  ctx.s.z = pMem->zShort;  /* Space used for small aggregate contexts */
 | 
						|
  ctx.pAgg = pMem->z;
 | 
						|
  ctx.cnt = ++pMem->i;
 | 
						|
  ctx.isError = 0;
 | 
						|
  ctx.isStep = 1;
 | 
						|
  (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
 | 
						|
  pMem->z = ctx.pAgg;
 | 
						|
  pMem->flags = MEM_AggCtx;
 | 
						|
  popStack(&pTos, n+1);
 | 
						|
  if( ctx.isError ){
 | 
						|
    rc = SQLITE_ERROR;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AggFocus * P2 *
 | 
						|
**
 | 
						|
** Pop the top of the stack and use that as an aggregator key.  If
 | 
						|
** an aggregator with that same key already exists, then make the
 | 
						|
** aggregator the current aggregator and jump to P2.  If no aggregator
 | 
						|
** with the given key exists, create one and make it current but
 | 
						|
** do not jump.
 | 
						|
**
 | 
						|
** The order of aggregator opcodes is important.  The order is:
 | 
						|
** AggReset AggFocus AggNext.  In other words, you must execute
 | 
						|
** AggReset first, then zero or more AggFocus operations, then
 | 
						|
** zero or more AggNext operations.  You must not execute an AggFocus
 | 
						|
** in between an AggNext and an AggReset.
 | 
						|
*/
 | 
						|
case OP_AggFocus: {
 | 
						|
  AggElem *pElem;
 | 
						|
  char *zKey;
 | 
						|
  int nKey;
 | 
						|
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  Stringify(pTos);
 | 
						|
  zKey = pTos->z;
 | 
						|
  nKey = pTos->n;
 | 
						|
  pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
 | 
						|
  if( pElem ){
 | 
						|
    p->agg.pCurrent = pElem;
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
  }else{
 | 
						|
    AggInsert(&p->agg, zKey, nKey);
 | 
						|
    if( sqlite_malloc_failed ) goto no_mem;
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break; 
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AggSet * P2 *
 | 
						|
**
 | 
						|
** Move the top of the stack into the P2-th field of the current
 | 
						|
** aggregate.  String values are duplicated into new memory.
 | 
						|
*/
 | 
						|
case OP_AggSet: {
 | 
						|
  AggElem *pFocus = AggInFocus(p->agg);
 | 
						|
  Mem *pMem;
 | 
						|
  int i = pOp->p2;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  if( pFocus==0 ) goto no_mem;
 | 
						|
  assert( i>=0 && i<p->agg.nMem );
 | 
						|
  Deephemeralize(pTos);
 | 
						|
  pMem = &pFocus->aMem[i];
 | 
						|
  Release(pMem);
 | 
						|
  *pMem = *pTos;
 | 
						|
  if( pMem->flags & MEM_Dyn ){
 | 
						|
    pTos->flags = MEM_Null;
 | 
						|
  }else if( pMem->flags & MEM_Short ){
 | 
						|
    pMem->z = pMem->zShort;
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AggGet * P2 *
 | 
						|
**
 | 
						|
** Push a new entry onto the stack which is a copy of the P2-th field
 | 
						|
** of the current aggregate.  Strings are not duplicated so
 | 
						|
** string values will be ephemeral.
 | 
						|
*/
 | 
						|
case OP_AggGet: {
 | 
						|
  AggElem *pFocus = AggInFocus(p->agg);
 | 
						|
  Mem *pMem;
 | 
						|
  int i = pOp->p2;
 | 
						|
  if( pFocus==0 ) goto no_mem;
 | 
						|
  assert( i>=0 && i<p->agg.nMem );
 | 
						|
  pTos++;
 | 
						|
  pMem = &pFocus->aMem[i];
 | 
						|
  *pTos = *pMem;
 | 
						|
  if( pTos->flags & MEM_Str ){
 | 
						|
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
 | 
						|
    pTos->flags |= MEM_Ephem;
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: AggNext * P2 *
 | 
						|
**
 | 
						|
** Make the next aggregate value the current aggregate.  The prior
 | 
						|
** aggregate is deleted.  If all aggregate values have been consumed,
 | 
						|
** jump to P2.
 | 
						|
**
 | 
						|
** The order of aggregator opcodes is important.  The order is:
 | 
						|
** AggReset AggFocus AggNext.  In other words, you must execute
 | 
						|
** AggReset first, then zero or more AggFocus operations, then
 | 
						|
** zero or more AggNext operations.  You must not execute an AggFocus
 | 
						|
** in between an AggNext and an AggReset.
 | 
						|
*/
 | 
						|
case OP_AggNext: {
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  if( p->agg.pSearch==0 ){
 | 
						|
    p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
 | 
						|
  }else{
 | 
						|
    p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
 | 
						|
  }
 | 
						|
  if( p->agg.pSearch==0 ){
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
  } else {
 | 
						|
    int i;
 | 
						|
    sqlite_func ctx;
 | 
						|
    Mem *aMem;
 | 
						|
    p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
 | 
						|
    aMem = p->agg.pCurrent->aMem;
 | 
						|
    for(i=0; i<p->agg.nMem; i++){
 | 
						|
      int freeCtx;
 | 
						|
      if( p->agg.apFunc[i]==0 ) continue;
 | 
						|
      if( p->agg.apFunc[i]->xFinalize==0 ) continue;
 | 
						|
      ctx.s.flags = MEM_Null;
 | 
						|
      ctx.s.z = aMem[i].zShort;
 | 
						|
      ctx.pAgg = (void*)aMem[i].z;
 | 
						|
      freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
 | 
						|
      ctx.cnt = aMem[i].i;
 | 
						|
      ctx.isStep = 0;
 | 
						|
      ctx.pFunc = p->agg.apFunc[i];
 | 
						|
      (*p->agg.apFunc[i]->xFinalize)(&ctx);
 | 
						|
      if( freeCtx ){
 | 
						|
        sqliteFree( aMem[i].z );
 | 
						|
      }
 | 
						|
      aMem[i] = ctx.s;
 | 
						|
      if( aMem[i].flags & MEM_Short ){
 | 
						|
        aMem[i].z = aMem[i].zShort;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SetInsert P1 * P3
 | 
						|
**
 | 
						|
** If Set P1 does not exist then create it.  Then insert value
 | 
						|
** P3 into that set.  If P3 is NULL, then insert the top of the
 | 
						|
** stack into the set.
 | 
						|
*/
 | 
						|
case OP_SetInsert: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  if( p->nSet<=i ){
 | 
						|
    int k;
 | 
						|
    Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
 | 
						|
    if( aSet==0 ) goto no_mem;
 | 
						|
    p->aSet = aSet;
 | 
						|
    for(k=p->nSet; k<=i; k++){
 | 
						|
      sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
 | 
						|
    }
 | 
						|
    p->nSet = i+1;
 | 
						|
  }
 | 
						|
  if( pOp->p3 ){
 | 
						|
    sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
 | 
						|
  }else{
 | 
						|
    assert( pTos>=p->aStack );
 | 
						|
    Stringify(pTos);
 | 
						|
    sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
 | 
						|
    Release(pTos);
 | 
						|
    pTos--;
 | 
						|
  }
 | 
						|
  if( sqlite_malloc_failed ) goto no_mem;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SetFound P1 P2 *
 | 
						|
**
 | 
						|
** Pop the stack once and compare the value popped off with the
 | 
						|
** contents of set P1.  If the element popped exists in set P1,
 | 
						|
** then jump to P2.  Otherwise fall through.
 | 
						|
*/
 | 
						|
case OP_SetFound: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  Stringify(pTos);
 | 
						|
  if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SetNotFound P1 P2 *
 | 
						|
**
 | 
						|
** Pop the stack once and compare the value popped off with the
 | 
						|
** contents of set P1.  If the element popped does not exists in 
 | 
						|
** set P1, then jump to P2.  Otherwise fall through.
 | 
						|
*/
 | 
						|
case OP_SetNotFound: {
 | 
						|
  int i = pOp->p1;
 | 
						|
  assert( pTos>=p->aStack );
 | 
						|
  Stringify(pTos);
 | 
						|
  if( i<0 || i>=p->nSet ||
 | 
						|
       sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
 | 
						|
    pc = pOp->p2 - 1;
 | 
						|
  }
 | 
						|
  Release(pTos);
 | 
						|
  pTos--;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: SetFirst P1 P2 *
 | 
						|
**
 | 
						|
** Read the first element from set P1 and push it onto the stack.  If the
 | 
						|
** set is empty, push nothing and jump immediately to P2.  This opcode is
 | 
						|
** used in combination with OP_SetNext to loop over all elements of a set.
 | 
						|
*/
 | 
						|
/* Opcode: SetNext P1 P2 *
 | 
						|
**
 | 
						|
** Read the next element from set P1 and push it onto the stack.  If there
 | 
						|
** are no more elements in the set, do not do the push and fall through.
 | 
						|
** Otherwise, jump to P2 after pushing the next set element.
 | 
						|
*/
 | 
						|
case OP_SetFirst: 
 | 
						|
case OP_SetNext: {
 | 
						|
  Set *pSet;
 | 
						|
  CHECK_FOR_INTERRUPT;
 | 
						|
  if( pOp->p1<0 || pOp->p1>=p->nSet ){
 | 
						|
    if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  pSet = &p->aSet[pOp->p1];
 | 
						|
  if( pOp->opcode==OP_SetFirst ){
 | 
						|
    pSet->prev = sqliteHashFirst(&pSet->hash);
 | 
						|
    if( pSet->prev==0 ){
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    assert( pSet->prev );
 | 
						|
    pSet->prev = sqliteHashNext(pSet->prev);
 | 
						|
    if( pSet->prev==0 ){
 | 
						|
      break;
 | 
						|
    }else{
 | 
						|
      pc = pOp->p2 - 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pTos++;
 | 
						|
  pTos->z = sqliteHashKey(pSet->prev);
 | 
						|
  pTos->n = sqliteHashKeysize(pSet->prev);
 | 
						|
  pTos->flags = MEM_Str | MEM_Ephem;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* Opcode: Vacuum * * *
 | 
						|
**
 | 
						|
** Vacuum the entire database.  This opcode will cause other virtual
 | 
						|
** machines to be created and run.  It may not be called from within
 | 
						|
** a transaction.
 | 
						|
*/
 | 
						|
case OP_Vacuum: {
 | 
						|
  if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
 | 
						|
  rc = sqliteRunVacuum(&p->zErrMsg, db);
 | 
						|
  if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/* An other opcode is illegal...
 | 
						|
*/
 | 
						|
default: {
 | 
						|
  sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
 | 
						|
  sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
 | 
						|
  rc = SQLITE_INTERNAL;
 | 
						|
  break;
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************
 | 
						|
** The cases of the switch statement above this line should all be indented
 | 
						|
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
 | 
						|
** readability.  From this point on down, the normal indentation rules are
 | 
						|
** restored.
 | 
						|
*****************************************************************************/
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef VDBE_PROFILE
 | 
						|
    {
 | 
						|
      long long elapse = hwtime() - start;
 | 
						|
      pOp->cycles += elapse;
 | 
						|
      pOp->cnt++;
 | 
						|
#if 0
 | 
						|
        fprintf(stdout, "%10lld ", elapse);
 | 
						|
        sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* The following code adds nothing to the actual functionality
 | 
						|
    ** of the program.  It is only here for testing and debugging.
 | 
						|
    ** On the other hand, it does burn CPU cycles every time through
 | 
						|
    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
 | 
						|
    */
 | 
						|
#ifndef NDEBUG
 | 
						|
    /* Sanity checking on the top element of the stack */
 | 
						|
    if( pTos>=p->aStack ){
 | 
						|
      assert( pTos->flags!=0 );  /* Must define some type */
 | 
						|
      if( pTos->flags & MEM_Str ){
 | 
						|
        int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
 | 
						|
        assert( x!=0 );            /* Strings must define a string subtype */
 | 
						|
        assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
 | 
						|
        assert( pTos->z!=0 );      /* Strings must have a value */
 | 
						|
        /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
 | 
						|
        assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
 | 
						|
        assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
 | 
						|
      }else{
 | 
						|
        /* Cannot define a string subtype for non-string objects */
 | 
						|
        assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
 | 
						|
      }
 | 
						|
      /* MEM_Null excludes all other types */
 | 
						|
      assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
 | 
						|
    }
 | 
						|
    if( pc<-1 || pc>=p->nOp ){
 | 
						|
      sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
 | 
						|
      rc = SQLITE_INTERNAL;
 | 
						|
    }
 | 
						|
    if( p->trace && pTos>=p->aStack ){
 | 
						|
      int i;
 | 
						|
      fprintf(p->trace, "Stack:");
 | 
						|
      for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
 | 
						|
        if( pTos[i].flags & MEM_Null ){
 | 
						|
          fprintf(p->trace, " NULL");
 | 
						|
        }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
 | 
						|
          fprintf(p->trace, " si:%d", pTos[i].i);
 | 
						|
        }else if( pTos[i].flags & MEM_Int ){
 | 
						|
          fprintf(p->trace, " i:%d", pTos[i].i);
 | 
						|
        }else if( pTos[i].flags & MEM_Real ){
 | 
						|
          fprintf(p->trace, " r:%g", pTos[i].r);
 | 
						|
        }else if( pTos[i].flags & MEM_Str ){
 | 
						|
          int j, k;
 | 
						|
          char zBuf[100];
 | 
						|
          zBuf[0] = ' ';
 | 
						|
          if( pTos[i].flags & MEM_Dyn ){
 | 
						|
            zBuf[1] = 'z';
 | 
						|
            assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
 | 
						|
          }else if( pTos[i].flags & MEM_Static ){
 | 
						|
            zBuf[1] = 't';
 | 
						|
            assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
 | 
						|
          }else if( pTos[i].flags & MEM_Ephem ){
 | 
						|
            zBuf[1] = 'e';
 | 
						|
            assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
 | 
						|
          }else{
 | 
						|
            zBuf[1] = 's';
 | 
						|
          }
 | 
						|
          zBuf[2] = '[';
 | 
						|
          k = 3;
 | 
						|
          for(j=0; j<20 && j<pTos[i].n; j++){
 | 
						|
            int c = pTos[i].z[j];
 | 
						|
            if( c==0 && j==pTos[i].n-1 ) break;
 | 
						|
            if( isprint(c) && !isspace(c) ){
 | 
						|
              zBuf[k++] = c;
 | 
						|
            }else{
 | 
						|
              zBuf[k++] = '.';
 | 
						|
            }
 | 
						|
          }
 | 
						|
          zBuf[k++] = ']';
 | 
						|
          zBuf[k++] = 0;
 | 
						|
          fprintf(p->trace, "%s", zBuf);
 | 
						|
        }else{
 | 
						|
          fprintf(p->trace, " ???");
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
 | 
						|
      fprintf(p->trace,"\n");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }  /* The end of the for(;;) loop the loops through opcodes */
 | 
						|
 | 
						|
  /* If we reach this point, it means that execution is finished.
 | 
						|
  */
 | 
						|
vdbe_halt:
 | 
						|
  if( rc ){
 | 
						|
    p->rc = rc;
 | 
						|
    rc = SQLITE_ERROR;
 | 
						|
  }else{
 | 
						|
    rc = SQLITE_DONE;
 | 
						|
  }
 | 
						|
  p->magic = VDBE_MAGIC_HALT;
 | 
						|
  p->pTos = pTos;
 | 
						|
  return rc;
 | 
						|
 | 
						|
  /* Jump to here if a malloc() fails.  It's hard to get a malloc()
 | 
						|
  ** to fail on a modern VM computer, so this code is untested.
 | 
						|
  */
 | 
						|
no_mem:
 | 
						|
  sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
 | 
						|
  rc = SQLITE_NOMEM;
 | 
						|
  goto vdbe_halt;
 | 
						|
 | 
						|
  /* Jump to here for an SQLITE_MISUSE error.
 | 
						|
  */
 | 
						|
abort_due_to_misuse:
 | 
						|
  rc = SQLITE_MISUSE;
 | 
						|
  /* Fall thru into abort_due_to_error */
 | 
						|
 | 
						|
  /* Jump to here for any other kind of fatal error.  The "rc" variable
 | 
						|
  ** should hold the error number.
 | 
						|
  */
 | 
						|
abort_due_to_error:
 | 
						|
  if( p->zErrMsg==0 ){
 | 
						|
    if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
 | 
						|
    sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
 | 
						|
  }
 | 
						|
  goto vdbe_halt;
 | 
						|
 | 
						|
  /* Jump to here if the sqlite_interrupt() API sets the interrupt
 | 
						|
  ** flag.
 | 
						|
  */
 | 
						|
abort_due_to_interrupt:
 | 
						|
  assert( db->flags & SQLITE_Interrupt );
 | 
						|
  db->flags &= ~SQLITE_Interrupt;
 | 
						|
  if( db->magic!=SQLITE_MAGIC_BUSY ){
 | 
						|
    rc = SQLITE_MISUSE;
 | 
						|
  }else{
 | 
						|
    rc = SQLITE_INTERRUPT;
 | 
						|
  }
 | 
						|
  sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
 | 
						|
  goto vdbe_halt;
 | 
						|
}
 |