1657 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1657 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains routines used for analyzing expressions and
 | |
| ** for generating VDBE code that evaluates expressions in SQLite.
 | |
| **
 | |
| ** $Id: expr.c,v 1.1.1.1 2004-03-11 22:22:23 alex Exp $
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include <ctype.h>
 | |
| 
 | |
| /*
 | |
| ** Construct a new expression node and return a pointer to it.  Memory
 | |
| ** for this node is obtained from sqliteMalloc().  The calling function
 | |
| ** is responsible for making sure the node eventually gets freed.
 | |
| */
 | |
| Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
 | |
|   Expr *pNew;
 | |
|   pNew = sqliteMalloc( sizeof(Expr) );
 | |
|   if( pNew==0 ){
 | |
|     /* When malloc fails, we leak memory from pLeft and pRight */
 | |
|     return 0;
 | |
|   }
 | |
|   pNew->op = op;
 | |
|   pNew->pLeft = pLeft;
 | |
|   pNew->pRight = pRight;
 | |
|   if( pToken ){
 | |
|     assert( pToken->dyn==0 );
 | |
|     pNew->token = *pToken;
 | |
|     pNew->span = *pToken;
 | |
|   }else{
 | |
|     assert( pNew->token.dyn==0 );
 | |
|     assert( pNew->token.z==0 );
 | |
|     assert( pNew->token.n==0 );
 | |
|     if( pLeft && pRight ){
 | |
|       sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
 | |
|     }else{
 | |
|       pNew->span = pNew->token;
 | |
|     }
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the Expr.span field of the given expression to span all
 | |
| ** text between the two given tokens.
 | |
| */
 | |
| void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
 | |
|   assert( pRight!=0 );
 | |
|   assert( pLeft!=0 );
 | |
|   /* Note: pExpr might be NULL due to a prior malloc failure */
 | |
|   if( pExpr && pRight->z && pLeft->z ){
 | |
|     if( pLeft->dyn==0 && pRight->dyn==0 ){
 | |
|       pExpr->span.z = pLeft->z;
 | |
|       pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
 | |
|     }else{
 | |
|       pExpr->span.z = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct a new expression node for a function with multiple
 | |
| ** arguments.
 | |
| */
 | |
| Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
 | |
|   Expr *pNew;
 | |
|   pNew = sqliteMalloc( sizeof(Expr) );
 | |
|   if( pNew==0 ){
 | |
|     /* sqliteExprListDelete(pList); // Leak pList when malloc fails */
 | |
|     return 0;
 | |
|   }
 | |
|   pNew->op = TK_FUNCTION;
 | |
|   pNew->pList = pList;
 | |
|   if( pToken ){
 | |
|     assert( pToken->dyn==0 );
 | |
|     pNew->token = *pToken;
 | |
|   }else{
 | |
|     pNew->token.z = 0;
 | |
|   }
 | |
|   pNew->span = pNew->token;
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Recursively delete an expression tree.
 | |
| */
 | |
| void sqliteExprDelete(Expr *p){
 | |
|   if( p==0 ) return;
 | |
|   if( p->span.dyn ) sqliteFree((char*)p->span.z);
 | |
|   if( p->token.dyn ) sqliteFree((char*)p->token.z);
 | |
|   sqliteExprDelete(p->pLeft);
 | |
|   sqliteExprDelete(p->pRight);
 | |
|   sqliteExprListDelete(p->pList);
 | |
|   sqliteSelectDelete(p->pSelect);
 | |
|   sqliteFree(p);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The following group of routines make deep copies of expressions,
 | |
| ** expression lists, ID lists, and select statements.  The copies can
 | |
| ** be deleted (by being passed to their respective ...Delete() routines)
 | |
| ** without effecting the originals.
 | |
| **
 | |
| ** The expression list, ID, and source lists return by sqliteExprListDup(),
 | |
| ** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded 
 | |
| ** by subsequent calls to sqlite*ListAppend() routines.
 | |
| **
 | |
| ** Any tables that the SrcList might point to are not duplicated.
 | |
| */
 | |
| Expr *sqliteExprDup(Expr *p){
 | |
|   Expr *pNew;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMallocRaw( sizeof(*p) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   memcpy(pNew, p, sizeof(*pNew));
 | |
|   if( p->token.z!=0 ){
 | |
|     pNew->token.z = sqliteStrDup(p->token.z);
 | |
|     pNew->token.dyn = 1;
 | |
|   }else{
 | |
|     assert( pNew->token.z==0 );
 | |
|   }
 | |
|   pNew->span.z = 0;
 | |
|   pNew->pLeft = sqliteExprDup(p->pLeft);
 | |
|   pNew->pRight = sqliteExprDup(p->pRight);
 | |
|   pNew->pList = sqliteExprListDup(p->pList);
 | |
|   pNew->pSelect = sqliteSelectDup(p->pSelect);
 | |
|   return pNew;
 | |
| }
 | |
| void sqliteTokenCopy(Token *pTo, Token *pFrom){
 | |
|   if( pTo->dyn ) sqliteFree((char*)pTo->z);
 | |
|   if( pFrom->z ){
 | |
|     pTo->n = pFrom->n;
 | |
|     pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
 | |
|     pTo->dyn = 1;
 | |
|   }else{
 | |
|     pTo->z = 0;
 | |
|   }
 | |
| }
 | |
| ExprList *sqliteExprListDup(ExprList *p){
 | |
|   ExprList *pNew;
 | |
|   struct ExprList_item *pItem;
 | |
|   int i;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMalloc( sizeof(*pNew) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nExpr = pNew->nAlloc = p->nExpr;
 | |
|   pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
 | |
|   for(i=0; pItem && i<p->nExpr; i++, pItem++){
 | |
|     Expr *pNewExpr, *pOldExpr;
 | |
|     pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
 | |
|     if( pOldExpr->span.z!=0 && pNewExpr ){
 | |
|       /* Always make a copy of the span for top-level expressions in the
 | |
|       ** expression list.  The logic in SELECT processing that determines
 | |
|       ** the names of columns in the result set needs this information */
 | |
|       sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
 | |
|     }
 | |
|     assert( pNewExpr==0 || pNewExpr->span.z!=0 
 | |
|             || pOldExpr->span.z==0 || sqlite_malloc_failed );
 | |
|     pItem->zName = sqliteStrDup(p->a[i].zName);
 | |
|     pItem->sortOrder = p->a[i].sortOrder;
 | |
|     pItem->isAgg = p->a[i].isAgg;
 | |
|     pItem->done = 0;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| SrcList *sqliteSrcListDup(SrcList *p){
 | |
|   SrcList *pNew;
 | |
|   int i;
 | |
|   int nByte;
 | |
|   if( p==0 ) return 0;
 | |
|   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
 | |
|   pNew = sqliteMallocRaw( nByte );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nSrc = pNew->nAlloc = p->nSrc;
 | |
|   for(i=0; i<p->nSrc; i++){
 | |
|     struct SrcList_item *pNewItem = &pNew->a[i];
 | |
|     struct SrcList_item *pOldItem = &p->a[i];
 | |
|     pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
 | |
|     pNewItem->zName = sqliteStrDup(pOldItem->zName);
 | |
|     pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
 | |
|     pNewItem->jointype = pOldItem->jointype;
 | |
|     pNewItem->iCursor = pOldItem->iCursor;
 | |
|     pNewItem->pTab = 0;
 | |
|     pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
 | |
|     pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
 | |
|     pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| IdList *sqliteIdListDup(IdList *p){
 | |
|   IdList *pNew;
 | |
|   int i;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMallocRaw( sizeof(*pNew) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nId = pNew->nAlloc = p->nId;
 | |
|   pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
 | |
|   if( pNew->a==0 ) return 0;
 | |
|   for(i=0; i<p->nId; i++){
 | |
|     struct IdList_item *pNewItem = &pNew->a[i];
 | |
|     struct IdList_item *pOldItem = &p->a[i];
 | |
|     pNewItem->zName = sqliteStrDup(pOldItem->zName);
 | |
|     pNewItem->idx = pOldItem->idx;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| Select *sqliteSelectDup(Select *p){
 | |
|   Select *pNew;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMallocRaw( sizeof(*p) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->isDistinct = p->isDistinct;
 | |
|   pNew->pEList = sqliteExprListDup(p->pEList);
 | |
|   pNew->pSrc = sqliteSrcListDup(p->pSrc);
 | |
|   pNew->pWhere = sqliteExprDup(p->pWhere);
 | |
|   pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
 | |
|   pNew->pHaving = sqliteExprDup(p->pHaving);
 | |
|   pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
 | |
|   pNew->op = p->op;
 | |
|   pNew->pPrior = sqliteSelectDup(p->pPrior);
 | |
|   pNew->nLimit = p->nLimit;
 | |
|   pNew->nOffset = p->nOffset;
 | |
|   pNew->zSelect = 0;
 | |
|   pNew->iLimit = -1;
 | |
|   pNew->iOffset = -1;
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the end of an expression list.  If pList is
 | |
| ** initially NULL, then create a new expression list.
 | |
| */
 | |
| ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
 | |
|   if( pList==0 ){
 | |
|     pList = sqliteMalloc( sizeof(ExprList) );
 | |
|     if( pList==0 ){
 | |
|       /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
 | |
|       return 0;
 | |
|     }
 | |
|     assert( pList->nAlloc==0 );
 | |
|   }
 | |
|   if( pList->nAlloc<=pList->nExpr ){
 | |
|     pList->nAlloc = pList->nAlloc*2 + 4;
 | |
|     pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
 | |
|     if( pList->a==0 ){
 | |
|       /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
 | |
|       pList->nExpr = pList->nAlloc = 0;
 | |
|       return pList;
 | |
|     }
 | |
|   }
 | |
|   assert( pList->a!=0 );
 | |
|   if( pExpr || pName ){
 | |
|     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
 | |
|     memset(pItem, 0, sizeof(*pItem));
 | |
|     pItem->pExpr = pExpr;
 | |
|     if( pName ){
 | |
|       sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
 | |
|       sqliteDequote(pItem->zName);
 | |
|     }
 | |
|   }
 | |
|   return pList;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an entire expression list.
 | |
| */
 | |
| void sqliteExprListDelete(ExprList *pList){
 | |
|   int i;
 | |
|   if( pList==0 ) return;
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     sqliteExprDelete(pList->a[i].pExpr);
 | |
|     sqliteFree(pList->a[i].zName);
 | |
|   }
 | |
|   sqliteFree(pList->a);
 | |
|   sqliteFree(pList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Return 1 if the expression is constant
 | |
| ** and 0 if it involves variables.
 | |
| **
 | |
| ** For the purposes of this function, a double-quoted string (ex: "abc")
 | |
| ** is considered a variable but a single-quoted string (ex: 'abc') is
 | |
| ** a constant.
 | |
| */
 | |
| int sqliteExprIsConstant(Expr *p){
 | |
|   switch( p->op ){
 | |
|     case TK_ID:
 | |
|     case TK_COLUMN:
 | |
|     case TK_DOT:
 | |
|     case TK_FUNCTION:
 | |
|       return 0;
 | |
|     case TK_NULL:
 | |
|     case TK_STRING:
 | |
|     case TK_INTEGER:
 | |
|     case TK_FLOAT:
 | |
|     case TK_VARIABLE:
 | |
|       return 1;
 | |
|     default: {
 | |
|       if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
 | |
|       if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
 | |
|       if( p->pList ){
 | |
|         int i;
 | |
|         for(i=0; i<p->pList->nExpr; i++){
 | |
|           if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
 | |
|         }
 | |
|       }
 | |
|       return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the given expression codes a constant integer that is small enough
 | |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer
 | |
| ** in *pValue.  If the expression is not an integer or if it is too big
 | |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
 | |
| */
 | |
| int sqliteExprIsInteger(Expr *p, int *pValue){
 | |
|   switch( p->op ){
 | |
|     case TK_INTEGER: {
 | |
|       if( sqliteFitsIn32Bits(p->token.z) ){
 | |
|         *pValue = atoi(p->token.z);
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_STRING: {
 | |
|       const char *z = p->token.z;
 | |
|       int n = p->token.n;
 | |
|       if( n>0 && z[0]=='-' ){ z++; n--; }
 | |
|       while( n>0 && *z && isdigit(*z) ){ z++; n--; }
 | |
|       if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
 | |
|         *pValue = atoi(p->token.z);
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_UPLUS: {
 | |
|       return sqliteExprIsInteger(p->pLeft, pValue);
 | |
|     }
 | |
|     case TK_UMINUS: {
 | |
|       int v;
 | |
|       if( sqliteExprIsInteger(p->pLeft, &v) ){
 | |
|         *pValue = -v;
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the given string is a row-id column name.
 | |
| */
 | |
| int sqliteIsRowid(const char *z){
 | |
|   if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
 | |
|   if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
 | |
|   if( sqliteStrICmp(z, "OID")==0 ) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
 | |
| ** that name in the set of source tables in pSrcList and make the pExpr 
 | |
| ** expression node refer back to that source column.  The following changes
 | |
| ** are made to pExpr:
 | |
| **
 | |
| **    pExpr->iDb           Set the index in db->aDb[] of the database holding
 | |
| **                         the table.
 | |
| **    pExpr->iTable        Set to the cursor number for the table obtained
 | |
| **                         from pSrcList.
 | |
| **    pExpr->iColumn       Set to the column number within the table.
 | |
| **    pExpr->dataType      Set to the appropriate data type for the column.
 | |
| **    pExpr->op            Set to TK_COLUMN.
 | |
| **    pExpr->pLeft         Any expression this points to is deleted
 | |
| **    pExpr->pRight        Any expression this points to is deleted.
 | |
| **
 | |
| ** The pDbToken is the name of the database (the "X").  This value may be
 | |
| ** NULL meaning that name is of the form Y.Z or Z.  Any available database
 | |
| ** can be used.  The pTableToken is the name of the table (the "Y").  This
 | |
| ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
 | |
| ** means that the form of the name is Z and that columns from any table
 | |
| ** can be used.
 | |
| **
 | |
| ** If the name cannot be resolved unambiguously, leave an error message
 | |
| ** in pParse and return non-zero.  Return zero on success.
 | |
| */
 | |
| static int lookupName(
 | |
|   Parse *pParse,      /* The parsing context */
 | |
|   Token *pDbToken,     /* Name of the database containing table, or NULL */
 | |
|   Token *pTableToken,  /* Name of table containing column, or NULL */
 | |
|   Token *pColumnToken, /* Name of the column. */
 | |
|   SrcList *pSrcList,   /* List of tables used to resolve column names */
 | |
|   ExprList *pEList,    /* List of expressions used to resolve "AS" */
 | |
|   Expr *pExpr          /* Make this EXPR node point to the selected column */
 | |
| ){
 | |
|   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
 | |
|   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
 | |
|   char *zCol = 0;      /* Name of the column.  The "Z" */
 | |
|   int i, j;            /* Loop counters */
 | |
|   int cnt = 0;         /* Number of matching column names */
 | |
|   int cntTab = 0;      /* Number of matching table names */
 | |
|   sqlite *db = pParse->db;  /* The database */
 | |
| 
 | |
|   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
 | |
|   if( pDbToken && pDbToken->z ){
 | |
|     zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
 | |
|     sqliteDequote(zDb);
 | |
|   }else{
 | |
|     zDb = 0;
 | |
|   }
 | |
|   if( pTableToken && pTableToken->z ){
 | |
|     zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
 | |
|     sqliteDequote(zTab);
 | |
|   }else{
 | |
|     assert( zDb==0 );
 | |
|     zTab = 0;
 | |
|   }
 | |
|   zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
 | |
|   sqliteDequote(zCol);
 | |
|   if( sqlite_malloc_failed ){
 | |
|     return 1;  /* Leak memory (zDb and zTab) if malloc fails */
 | |
|   }
 | |
|   assert( zTab==0 || pEList==0 );
 | |
| 
 | |
|   pExpr->iTable = -1;
 | |
|   for(i=0; i<pSrcList->nSrc; i++){
 | |
|     struct SrcList_item *pItem = &pSrcList->a[i];
 | |
|     Table *pTab = pItem->pTab;
 | |
|     Column *pCol;
 | |
| 
 | |
|     if( pTab==0 ) continue;
 | |
|     assert( pTab->nCol>0 );
 | |
|     if( zTab ){
 | |
|       if( pItem->zAlias ){
 | |
|         char *zTabName = pItem->zAlias;
 | |
|         if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
 | |
|       }else{
 | |
|         char *zTabName = pTab->zName;
 | |
|         if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
 | |
|         if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if( 0==(cntTab++) ){
 | |
|       pExpr->iTable = pItem->iCursor;
 | |
|       pExpr->iDb = pTab->iDb;
 | |
|     }
 | |
|     for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
 | |
|       if( sqliteStrICmp(pCol->zName, zCol)==0 ){
 | |
|         cnt++;
 | |
|         pExpr->iTable = pItem->iCursor;
 | |
|         pExpr->iDb = pTab->iDb;
 | |
|         /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
 | |
|         pExpr->iColumn = j==pTab->iPKey ? -1 : j;
 | |
|         pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If we have not already resolved the name, then maybe 
 | |
|   ** it is a new.* or old.* trigger argument reference
 | |
|   */
 | |
|   if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
 | |
|     TriggerStack *pTriggerStack = pParse->trigStack;
 | |
|     Table *pTab = 0;
 | |
|     if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
 | |
|       pExpr->iTable = pTriggerStack->newIdx;
 | |
|       assert( pTriggerStack->pTab );
 | |
|       pTab = pTriggerStack->pTab;
 | |
|     }else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
 | |
|       pExpr->iTable = pTriggerStack->oldIdx;
 | |
|       assert( pTriggerStack->pTab );
 | |
|       pTab = pTriggerStack->pTab;
 | |
|     }
 | |
| 
 | |
|     if( pTab ){ 
 | |
|       int j;
 | |
|       Column *pCol = pTab->aCol;
 | |
|       
 | |
|       pExpr->iDb = pTab->iDb;
 | |
|       cntTab++;
 | |
|       for(j=0; j < pTab->nCol; j++, pCol++) {
 | |
|         if( sqliteStrICmp(pCol->zName, zCol)==0 ){
 | |
|           cnt++;
 | |
|           pExpr->iColumn = j==pTab->iPKey ? -1 : j;
 | |
|           pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Perhaps the name is a reference to the ROWID
 | |
|   */
 | |
|   if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
 | |
|     cnt = 1;
 | |
|     pExpr->iColumn = -1;
 | |
|     pExpr->dataType = SQLITE_SO_NUM;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
 | |
|   ** might refer to an result-set alias.  This happens, for example, when
 | |
|   ** we are resolving names in the WHERE clause of the following command:
 | |
|   **
 | |
|   **     SELECT a+b AS x FROM table WHERE x<10;
 | |
|   **
 | |
|   ** In cases like this, replace pExpr with a copy of the expression that
 | |
|   ** forms the result set entry ("a+b" in the example) and return immediately.
 | |
|   ** Note that the expression in the result set should have already been
 | |
|   ** resolved by the time the WHERE clause is resolved.
 | |
|   */
 | |
|   if( cnt==0 && pEList!=0 ){
 | |
|     for(j=0; j<pEList->nExpr; j++){
 | |
|       char *zAs = pEList->a[j].zName;
 | |
|       if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
 | |
|         assert( pExpr->pLeft==0 && pExpr->pRight==0 );
 | |
|         pExpr->op = TK_AS;
 | |
|         pExpr->iColumn = j;
 | |
|         pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
 | |
|         sqliteFree(zCol);
 | |
|         assert( zTab==0 && zDb==0 );
 | |
|         return 0;
 | |
|       }
 | |
|     } 
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** If X and Y are NULL (in other words if only the column name Z is
 | |
|   ** supplied) and the value of Z is enclosed in double-quotes, then
 | |
|   ** Z is a string literal if it doesn't match any column names.  In that
 | |
|   ** case, we need to return right away and not make any changes to
 | |
|   ** pExpr.
 | |
|   */
 | |
|   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
 | |
|     sqliteFree(zCol);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** cnt==0 means there was not match.  cnt>1 means there were two or
 | |
|   ** more matches.  Either way, we have an error.
 | |
|   */
 | |
|   if( cnt!=1 ){
 | |
|     char *z = 0;
 | |
|     char *zErr;
 | |
|     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
 | |
|     if( zDb ){
 | |
|       sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
 | |
|     }else if( zTab ){
 | |
|       sqliteSetString(&z, zTab, ".", zCol, 0);
 | |
|     }else{
 | |
|       z = sqliteStrDup(zCol);
 | |
|     }
 | |
|     sqliteErrorMsg(pParse, zErr, z);
 | |
|     sqliteFree(z);
 | |
|   }
 | |
| 
 | |
|   /* Clean up and return
 | |
|   */
 | |
|   sqliteFree(zDb);
 | |
|   sqliteFree(zTab);
 | |
|   sqliteFree(zCol);
 | |
|   sqliteExprDelete(pExpr->pLeft);
 | |
|   pExpr->pLeft = 0;
 | |
|   sqliteExprDelete(pExpr->pRight);
 | |
|   pExpr->pRight = 0;
 | |
|   pExpr->op = TK_COLUMN;
 | |
|   sqliteAuthRead(pParse, pExpr, pSrcList);
 | |
|   return cnt!=1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine walks an expression tree and resolves references to
 | |
| ** table columns.  Nodes of the form ID.ID or ID resolve into an
 | |
| ** index to the table in the table list and a column offset.  The 
 | |
| ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
 | |
| ** value is changed to the index of the referenced table in pTabList
 | |
| ** plus the "base" value.  The base value will ultimately become the
 | |
| ** VDBE cursor number for a cursor that is pointing into the referenced
 | |
| ** table.  The Expr.iColumn value is changed to the index of the column 
 | |
| ** of the referenced table.  The Expr.iColumn value for the special
 | |
| ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
 | |
| ** alias for ROWID.
 | |
| **
 | |
| ** We also check for instances of the IN operator.  IN comes in two
 | |
| ** forms:
 | |
| **
 | |
| **           expr IN (exprlist)
 | |
| ** and
 | |
| **           expr IN (SELECT ...)
 | |
| **
 | |
| ** The first form is handled by creating a set holding the list
 | |
| ** of allowed values.  The second form causes the SELECT to generate 
 | |
| ** a temporary table.
 | |
| **
 | |
| ** This routine also looks for scalar SELECTs that are part of an expression.
 | |
| ** If it finds any, it generates code to write the value of that select
 | |
| ** into a memory cell.
 | |
| **
 | |
| ** Unknown columns or tables provoke an error.  The function returns
 | |
| ** the number of errors seen and leaves an error message on pParse->zErrMsg.
 | |
| */
 | |
| int sqliteExprResolveIds(
 | |
|   Parse *pParse,     /* The parser context */
 | |
|   SrcList *pSrcList, /* List of tables used to resolve column names */
 | |
|   ExprList *pEList,  /* List of expressions used to resolve "AS" */
 | |
|   Expr *pExpr        /* The expression to be analyzed. */
 | |
| ){
 | |
|   int i;
 | |
| 
 | |
|   if( pExpr==0 || pSrcList==0 ) return 0;
 | |
|   for(i=0; i<pSrcList->nSrc; i++){
 | |
|     assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
 | |
|   }
 | |
|   switch( pExpr->op ){
 | |
|     /* Double-quoted strings (ex: "abc") are used as identifiers if
 | |
|     ** possible.  Otherwise they remain as strings.  Single-quoted
 | |
|     ** strings (ex: 'abc') are always string literals.
 | |
|     */
 | |
|     case TK_STRING: {
 | |
|       if( pExpr->token.z[0]=='\'' ) break;
 | |
|       /* Fall thru into the TK_ID case if this is a double-quoted string */
 | |
|     }
 | |
|     /* A lone identifier is the name of a columnd.
 | |
|     */
 | |
|     case TK_ID: {
 | |
|       if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
 | |
|         return 1;
 | |
|       }
 | |
|       break; 
 | |
|     }
 | |
|   
 | |
|     /* A table name and column name:     ID.ID
 | |
|     ** Or a database, table and column:  ID.ID.ID
 | |
|     */
 | |
|     case TK_DOT: {
 | |
|       Token *pColumn;
 | |
|       Token *pTable;
 | |
|       Token *pDb;
 | |
|       Expr *pRight;
 | |
| 
 | |
|       pRight = pExpr->pRight;
 | |
|       if( pRight->op==TK_ID ){
 | |
|         pDb = 0;
 | |
|         pTable = &pExpr->pLeft->token;
 | |
|         pColumn = &pRight->token;
 | |
|       }else{
 | |
|         assert( pRight->op==TK_DOT );
 | |
|         pDb = &pExpr->pLeft->token;
 | |
|         pTable = &pRight->pLeft->token;
 | |
|         pColumn = &pRight->pRight->token;
 | |
|       }
 | |
|       if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TK_IN: {
 | |
|       Vdbe *v = sqliteGetVdbe(pParse);
 | |
|       if( v==0 ) return 1;
 | |
|       if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
 | |
|         return 1;
 | |
|       }
 | |
|       if( pExpr->pSelect ){
 | |
|         /* Case 1:     expr IN (SELECT ...)
 | |
|         **
 | |
|         ** Generate code to write the results of the select into a temporary
 | |
|         ** table.  The cursor number of the temporary table has already
 | |
|         ** been put in iTable by sqliteExprResolveInSelect().
 | |
|         */
 | |
|         pExpr->iTable = pParse->nTab++;
 | |
|         sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
 | |
|         sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
 | |
|       }else if( pExpr->pList ){
 | |
|         /* Case 2:     expr IN (exprlist)
 | |
|         **
 | |
|         ** Create a set to put the exprlist values in.  The Set id is stored
 | |
|         ** in iTable.
 | |
|         */
 | |
|         int i, iSet;
 | |
|         for(i=0; i<pExpr->pList->nExpr; i++){
 | |
|           Expr *pE2 = pExpr->pList->a[i].pExpr;
 | |
|           if( !sqliteExprIsConstant(pE2) ){
 | |
|             sqliteErrorMsg(pParse,
 | |
|               "right-hand side of IN operator must be constant");
 | |
|             return 1;
 | |
|           }
 | |
|           if( sqliteExprCheck(pParse, pE2, 0, 0) ){
 | |
|             return 1;
 | |
|           }
 | |
|         }
 | |
|         iSet = pExpr->iTable = pParse->nSet++;
 | |
|         for(i=0; i<pExpr->pList->nExpr; i++){
 | |
|           Expr *pE2 = pExpr->pList->a[i].pExpr;
 | |
|           switch( pE2->op ){
 | |
|             case TK_FLOAT:
 | |
|             case TK_INTEGER:
 | |
|             case TK_STRING: {
 | |
|               int addr;
 | |
|               assert( pE2->token.z );
 | |
|               addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
 | |
|                                   pE2->token.z, pE2->token.n);
 | |
|               sqliteVdbeDequoteP3(v, addr);
 | |
|               break;
 | |
|             }
 | |
|             default: {
 | |
|               sqliteExprCode(pParse, pE2);
 | |
|               sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TK_SELECT: {
 | |
|       /* This has to be a scalar SELECT.  Generate code to put the
 | |
|       ** value of this select in a memory cell and record the number
 | |
|       ** of the memory cell in iColumn.
 | |
|       */
 | |
|       pExpr->iColumn = pParse->nMem++;
 | |
|       if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* For all else, just recursively walk the tree */
 | |
|     default: {
 | |
|       if( pExpr->pLeft
 | |
|       && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
 | |
|         return 1;
 | |
|       }
 | |
|       if( pExpr->pRight 
 | |
|       && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
 | |
|         return 1;
 | |
|       }
 | |
|       if( pExpr->pList ){
 | |
|         int i;
 | |
|         ExprList *pList = pExpr->pList;
 | |
|         for(i=0; i<pList->nExpr; i++){
 | |
|           Expr *pArg = pList->a[i].pExpr;
 | |
|           if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
 | |
|             return 1;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr is a node that defines a function of some kind.  It might
 | |
| ** be a syntactic function like "count(x)" or it might be a function
 | |
| ** that implements an operator, like "a LIKE b".  
 | |
| **
 | |
| ** This routine makes *pzName point to the name of the function and 
 | |
| ** *pnName hold the number of characters in the function name.
 | |
| */
 | |
| static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
 | |
|   switch( pExpr->op ){
 | |
|     case TK_FUNCTION: {
 | |
|       *pzName = pExpr->token.z;
 | |
|       *pnName = pExpr->token.n;
 | |
|       break;
 | |
|     }
 | |
|     case TK_LIKE: {
 | |
|       *pzName = "like";
 | |
|       *pnName = 4;
 | |
|       break;
 | |
|     }
 | |
|     case TK_GLOB: {
 | |
|       *pzName = "glob";
 | |
|       *pnName = 4;
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       *pzName = "can't happen";
 | |
|       *pnName = 12;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Error check the functions in an expression.  Make sure all
 | |
| ** function names are recognized and all functions have the correct
 | |
| ** number of arguments.  Leave an error message in pParse->zErrMsg
 | |
| ** if anything is amiss.  Return the number of errors.
 | |
| **
 | |
| ** if pIsAgg is not null and this expression is an aggregate function
 | |
| ** (like count(*) or max(value)) then write a 1 into *pIsAgg.
 | |
| */
 | |
| int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
 | |
|   int nErr = 0;
 | |
|   if( pExpr==0 ) return 0;
 | |
|   switch( pExpr->op ){
 | |
|     case TK_GLOB:
 | |
|     case TK_LIKE:
 | |
|     case TK_FUNCTION: {
 | |
|       int n = pExpr->pList ? pExpr->pList->nExpr : 0;  /* Number of arguments */
 | |
|       int no_such_func = 0;       /* True if no such function exists */
 | |
|       int wrong_num_args = 0;     /* True if wrong number of arguments */
 | |
|       int is_agg = 0;             /* True if is an aggregate function */
 | |
|       int i;
 | |
|       int nId;                    /* Number of characters in function name */
 | |
|       const char *zId;            /* The function name. */
 | |
|       FuncDef *pDef;
 | |
| 
 | |
|       getFunctionName(pExpr, &zId, &nId);
 | |
|       pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
 | |
|       if( pDef==0 ){
 | |
|         pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
 | |
|         if( pDef==0 ){
 | |
|           no_such_func = 1;
 | |
|         }else{
 | |
|           wrong_num_args = 1;
 | |
|         }
 | |
|       }else{
 | |
|         is_agg = pDef->xFunc==0;
 | |
|       }
 | |
|       if( is_agg && !allowAgg ){
 | |
|         sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
 | |
|         nErr++;
 | |
|         is_agg = 0;
 | |
|       }else if( no_such_func ){
 | |
|         sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
 | |
|         nErr++;
 | |
|       }else if( wrong_num_args ){
 | |
|         sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
 | |
|              nId, zId);
 | |
|         nErr++;
 | |
|       }
 | |
|       if( is_agg ){
 | |
|         pExpr->op = TK_AGG_FUNCTION;
 | |
|         if( pIsAgg ) *pIsAgg = 1;
 | |
|       }
 | |
|       for(i=0; nErr==0 && i<n; i++){
 | |
|         nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
 | |
|                                allowAgg && !is_agg, pIsAgg);
 | |
|       }
 | |
|       if( pDef==0 ){
 | |
|         /* Already reported an error */
 | |
|       }else if( pDef->dataType>=0 ){
 | |
|         if( pDef->dataType<n ){
 | |
|           pExpr->dataType = 
 | |
|              sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
 | |
|         }else{
 | |
|           pExpr->dataType = SQLITE_SO_NUM;
 | |
|         }
 | |
|       }else if( pDef->dataType==SQLITE_ARGS ){
 | |
|         pDef->dataType = SQLITE_SO_TEXT;
 | |
|         for(i=0; i<n; i++){
 | |
|           if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
 | |
|             pExpr->dataType = SQLITE_SO_NUM;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }else if( pDef->dataType==SQLITE_NUMERIC ){
 | |
|         pExpr->dataType = SQLITE_SO_NUM;
 | |
|       }else{
 | |
|         pExpr->dataType = SQLITE_SO_TEXT;
 | |
|       }
 | |
|     }
 | |
|     default: {
 | |
|       if( pExpr->pLeft ){
 | |
|         nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
 | |
|       }
 | |
|       if( nErr==0 && pExpr->pRight ){
 | |
|         nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
 | |
|       }
 | |
|       if( nErr==0 && pExpr->pList ){
 | |
|         int n = pExpr->pList->nExpr;
 | |
|         int i;
 | |
|         for(i=0; nErr==0 && i<n; i++){
 | |
|           Expr *pE2 = pExpr->pList->a[i].pExpr;
 | |
|           nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return nErr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
 | |
| ** given expression should sort as numeric values or as text.
 | |
| **
 | |
| ** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
 | |
| ** both been called on the expression before it is passed to this routine.
 | |
| */
 | |
| int sqliteExprType(Expr *p){
 | |
|   if( p==0 ) return SQLITE_SO_NUM;
 | |
|   while( p ) switch( p->op ){
 | |
|     case TK_PLUS:
 | |
|     case TK_MINUS:
 | |
|     case TK_STAR:
 | |
|     case TK_SLASH:
 | |
|     case TK_AND:
 | |
|     case TK_OR:
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL:
 | |
|     case TK_NOT:
 | |
|     case TK_UMINUS:
 | |
|     case TK_UPLUS:
 | |
|     case TK_BITAND:
 | |
|     case TK_BITOR:
 | |
|     case TK_BITNOT:
 | |
|     case TK_LSHIFT:
 | |
|     case TK_RSHIFT:
 | |
|     case TK_REM:
 | |
|     case TK_INTEGER:
 | |
|     case TK_FLOAT:
 | |
|     case TK_IN:
 | |
|     case TK_BETWEEN:
 | |
|     case TK_GLOB:
 | |
|     case TK_LIKE:
 | |
|       return SQLITE_SO_NUM;
 | |
| 
 | |
|     case TK_STRING:
 | |
|     case TK_NULL:
 | |
|     case TK_CONCAT:
 | |
|     case TK_VARIABLE:
 | |
|       return SQLITE_SO_TEXT;
 | |
| 
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ:
 | |
|       if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
 | |
|         return SQLITE_SO_NUM;
 | |
|       }
 | |
|       p = p->pRight;
 | |
|       break;
 | |
| 
 | |
|     case TK_AS:
 | |
|       p = p->pLeft;
 | |
|       break;
 | |
| 
 | |
|     case TK_COLUMN:
 | |
|     case TK_FUNCTION:
 | |
|     case TK_AGG_FUNCTION:
 | |
|       return p->dataType;
 | |
| 
 | |
|     case TK_SELECT:
 | |
|       assert( p->pSelect );
 | |
|       assert( p->pSelect->pEList );
 | |
|       assert( p->pSelect->pEList->nExpr>0 );
 | |
|       p = p->pSelect->pEList->a[0].pExpr;
 | |
|       break;
 | |
| 
 | |
|     case TK_CASE: {
 | |
|       if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
 | |
|         return SQLITE_SO_NUM;
 | |
|       }
 | |
|       if( p->pList ){
 | |
|         int i;
 | |
|         ExprList *pList = p->pList;
 | |
|         for(i=1; i<pList->nExpr; i+=2){
 | |
|           if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
 | |
|             return SQLITE_SO_NUM;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return SQLITE_SO_TEXT;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       assert( p->op==TK_ABORT );  /* Can't Happen */
 | |
|       break;
 | |
|   }
 | |
|   return SQLITE_SO_NUM;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code into the current Vdbe to evaluate the given
 | |
| ** expression and leave the result on the top of stack.
 | |
| */
 | |
| void sqliteExprCode(Parse *pParse, Expr *pExpr){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op;
 | |
|   if( v==0 || pExpr==0 ) return;
 | |
|   switch( pExpr->op ){
 | |
|     case TK_PLUS:     op = OP_Add;      break;
 | |
|     case TK_MINUS:    op = OP_Subtract; break;
 | |
|     case TK_STAR:     op = OP_Multiply; break;
 | |
|     case TK_SLASH:    op = OP_Divide;   break;
 | |
|     case TK_AND:      op = OP_And;      break;
 | |
|     case TK_OR:       op = OP_Or;       break;
 | |
|     case TK_LT:       op = OP_Lt;       break;
 | |
|     case TK_LE:       op = OP_Le;       break;
 | |
|     case TK_GT:       op = OP_Gt;       break;
 | |
|     case TK_GE:       op = OP_Ge;       break;
 | |
|     case TK_NE:       op = OP_Ne;       break;
 | |
|     case TK_EQ:       op = OP_Eq;       break;
 | |
|     case TK_ISNULL:   op = OP_IsNull;   break;
 | |
|     case TK_NOTNULL:  op = OP_NotNull;  break;
 | |
|     case TK_NOT:      op = OP_Not;      break;
 | |
|     case TK_UMINUS:   op = OP_Negative; break;
 | |
|     case TK_BITAND:   op = OP_BitAnd;   break;
 | |
|     case TK_BITOR:    op = OP_BitOr;    break;
 | |
|     case TK_BITNOT:   op = OP_BitNot;   break;
 | |
|     case TK_LSHIFT:   op = OP_ShiftLeft;  break;
 | |
|     case TK_RSHIFT:   op = OP_ShiftRight; break;
 | |
|     case TK_REM:      op = OP_Remainder;  break;
 | |
|     default: break;
 | |
|   }
 | |
|   switch( pExpr->op ){
 | |
|     case TK_COLUMN: {
 | |
|       if( pParse->useAgg ){
 | |
|         sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
 | |
|       }else if( pExpr->iColumn>=0 ){
 | |
|         sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
 | |
|       }else{
 | |
|         sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_STRING:
 | |
|     case TK_FLOAT:
 | |
|     case TK_INTEGER: {
 | |
|       if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
 | |
|         sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
 | |
|       }else{
 | |
|         sqliteVdbeAddOp(v, OP_String, 0, 0);
 | |
|       }
 | |
|       assert( pExpr->token.z );
 | |
|       sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
 | |
|       sqliteVdbeDequoteP3(v, -1);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NULL: {
 | |
|       sqliteVdbeAddOp(v, OP_String, 0, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_VARIABLE: {
 | |
|       sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
 | |
|         op += 6;  /* Convert numeric opcodes to text opcodes */
 | |
|       }
 | |
|       /* Fall through into the next case */
 | |
|     }
 | |
|     case TK_AND:
 | |
|     case TK_OR:
 | |
|     case TK_PLUS:
 | |
|     case TK_STAR:
 | |
|     case TK_MINUS:
 | |
|     case TK_REM:
 | |
|     case TK_BITAND:
 | |
|     case TK_BITOR:
 | |
|     case TK_SLASH: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteExprCode(pParse, pExpr->pRight);
 | |
|       sqliteVdbeAddOp(v, op, 0, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LSHIFT:
 | |
|     case TK_RSHIFT: {
 | |
|       sqliteExprCode(pParse, pExpr->pRight);
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteVdbeAddOp(v, op, 0, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_CONCAT: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteExprCode(pParse, pExpr->pRight);
 | |
|       sqliteVdbeAddOp(v, OP_Concat, 2, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_UMINUS: {
 | |
|       assert( pExpr->pLeft );
 | |
|       if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
 | |
|         Token *p = &pExpr->pLeft->token;
 | |
|         char *z = sqliteMalloc( p->n + 2 );
 | |
|         sprintf(z, "-%.*s", p->n, p->z);
 | |
|         if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
 | |
|           sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
 | |
|         }else{
 | |
|           sqliteVdbeAddOp(v, OP_String, 0, 0);
 | |
|         }
 | |
|         sqliteVdbeChangeP3(v, -1, z, p->n+1);
 | |
|         sqliteFree(z);
 | |
|         break;
 | |
|       }
 | |
|       /* Fall through into TK_NOT */
 | |
|     }
 | |
|     case TK_BITNOT:
 | |
|     case TK_NOT: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteVdbeAddOp(v, op, 0, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       int dest;
 | |
|       sqliteVdbeAddOp(v, OP_Integer, 1, 0);
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       dest = sqliteVdbeCurrentAddr(v) + 2;
 | |
|       sqliteVdbeAddOp(v, op, 1, dest);
 | |
|       sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_AGG_FUNCTION: {
 | |
|       sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
 | |
|       break;
 | |
|     }
 | |
|     case TK_GLOB:
 | |
|     case TK_LIKE:
 | |
|     case TK_FUNCTION: {
 | |
|       ExprList *pList = pExpr->pList;
 | |
|       int nExpr = pList ? pList->nExpr : 0;
 | |
|       FuncDef *pDef;
 | |
|       int nId;
 | |
|       const char *zId;
 | |
|       getFunctionName(pExpr, &zId, &nId);
 | |
|       pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
 | |
|       assert( pDef!=0 );
 | |
|       nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
 | |
|       sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
 | |
|       break;
 | |
|     }
 | |
|     case TK_SELECT: {
 | |
|       sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_IN: {
 | |
|       int addr;
 | |
|       sqliteVdbeAddOp(v, OP_Integer, 1, 0);
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       addr = sqliteVdbeCurrentAddr(v);
 | |
|       sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
 | |
|       sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       sqliteVdbeAddOp(v, OP_String, 0, 0);
 | |
|       sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
 | |
|       if( pExpr->pSelect ){
 | |
|         sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
 | |
|       }else{
 | |
|         sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
 | |
|       }
 | |
|       sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_BETWEEN: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteVdbeAddOp(v, OP_Dup, 0, 0);
 | |
|       sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
 | |
|       sqliteVdbeAddOp(v, OP_Ge, 0, 0);
 | |
|       sqliteVdbeAddOp(v, OP_Pull, 1, 0);
 | |
|       sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
 | |
|       sqliteVdbeAddOp(v, OP_Le, 0, 0);
 | |
|       sqliteVdbeAddOp(v, OP_And, 0, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_UPLUS:
 | |
|     case TK_AS: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       break;
 | |
|     }
 | |
|     case TK_CASE: {
 | |
|       int expr_end_label;
 | |
|       int jumpInst;
 | |
|       int addr;
 | |
|       int nExpr;
 | |
|       int i;
 | |
| 
 | |
|       assert(pExpr->pList);
 | |
|       assert((pExpr->pList->nExpr % 2) == 0);
 | |
|       assert(pExpr->pList->nExpr > 0);
 | |
|       nExpr = pExpr->pList->nExpr;
 | |
|       expr_end_label = sqliteVdbeMakeLabel(v);
 | |
|       if( pExpr->pLeft ){
 | |
|         sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       }
 | |
|       for(i=0; i<nExpr; i=i+2){
 | |
|         sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
 | |
|         if( pExpr->pLeft ){
 | |
|           sqliteVdbeAddOp(v, OP_Dup, 1, 1);
 | |
|           jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
 | |
|           sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | |
|         }else{
 | |
|           jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
 | |
|         }
 | |
|         sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
 | |
|         sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
 | |
|         addr = sqliteVdbeCurrentAddr(v);
 | |
|         sqliteVdbeChangeP2(v, jumpInst, addr);
 | |
|       }
 | |
|       if( pExpr->pLeft ){
 | |
|         sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       }
 | |
|       if( pExpr->pRight ){
 | |
|         sqliteExprCode(pParse, pExpr->pRight);
 | |
|       }else{
 | |
|         sqliteVdbeAddOp(v, OP_String, 0, 0);
 | |
|       }
 | |
|       sqliteVdbeResolveLabel(v, expr_end_label);
 | |
|       break;
 | |
|     }
 | |
|     case TK_RAISE: {
 | |
|       if( !pParse->trigStack ){
 | |
|         sqliteErrorMsg(pParse,
 | |
|                        "RAISE() may only be used within a trigger-program");
 | |
|         pParse->nErr++;
 | |
| 	return;
 | |
|       }
 | |
|       if( pExpr->iColumn == OE_Rollback ||
 | |
| 	  pExpr->iColumn == OE_Abort ||
 | |
| 	  pExpr->iColumn == OE_Fail ){
 | |
| 	  sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
 | |
|                            pExpr->token.z, pExpr->token.n);
 | |
| 	  sqliteVdbeDequoteP3(v, -1);
 | |
|       } else {
 | |
| 	  assert( pExpr->iColumn == OE_Ignore );
 | |
| 	  sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
 | |
|                            "(IGNORE jump)", 0);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that pushes the value of every element of the given
 | |
| ** expression list onto the stack.  If the includeTypes flag is true,
 | |
| ** then also push a string that is the datatype of each element onto
 | |
| ** the stack after the value.
 | |
| **
 | |
| ** Return the number of elements pushed onto the stack.
 | |
| */
 | |
| int sqliteExprCodeExprList(
 | |
|   Parse *pParse,     /* Parsing context */
 | |
|   ExprList *pList,   /* The expression list to be coded */
 | |
|   int includeTypes   /* TRUE to put datatypes on the stack too */
 | |
| ){
 | |
|   struct ExprList_item *pItem;
 | |
|   int i, n;
 | |
|   Vdbe *v;
 | |
|   if( pList==0 ) return 0;
 | |
|   v = sqliteGetVdbe(pParse);
 | |
|   n = pList->nExpr;
 | |
|   for(pItem=pList->a, i=0; i<n; i++, pItem++){
 | |
|     sqliteExprCode(pParse, pItem->pExpr);
 | |
|     if( includeTypes ){
 | |
|       sqliteVdbeOp3(v, OP_String, 0, 0, 
 | |
|          sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
 | |
|          P3_STATIC);
 | |
|     }
 | |
|   }
 | |
|   return includeTypes ? n*2 : n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a boolean expression such that a jump is made
 | |
| ** to the label "dest" if the expression is true but execution
 | |
| ** continues straight thru if the expression is false.
 | |
| **
 | |
| ** If the expression evaluates to NULL (neither true nor false), then
 | |
| ** take the jump if the jumpIfNull flag is true.
 | |
| */
 | |
| void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op = 0;
 | |
|   if( v==0 || pExpr==0 ) return;
 | |
|   switch( pExpr->op ){
 | |
|     case TK_LT:       op = OP_Lt;       break;
 | |
|     case TK_LE:       op = OP_Le;       break;
 | |
|     case TK_GT:       op = OP_Gt;       break;
 | |
|     case TK_GE:       op = OP_Ge;       break;
 | |
|     case TK_NE:       op = OP_Ne;       break;
 | |
|     case TK_EQ:       op = OP_Eq;       break;
 | |
|     case TK_ISNULL:   op = OP_IsNull;   break;
 | |
|     case TK_NOTNULL:  op = OP_NotNull;  break;
 | |
|     default:  break;
 | |
|   }
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AND: {
 | |
|       int d2 = sqliteVdbeMakeLabel(v);
 | |
|       sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | |
|       sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       sqliteVdbeResolveLabel(v, d2);
 | |
|       break;
 | |
|     }
 | |
|     case TK_OR: {
 | |
|       sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NOT: {
 | |
|       sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteExprCode(pParse, pExpr->pRight);
 | |
|       if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
 | |
|         op += 6;  /* Convert numeric opcodes to text opcodes */
 | |
|       }
 | |
|       sqliteVdbeAddOp(v, op, jumpIfNull, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteVdbeAddOp(v, op, 1, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_IN: {
 | |
|       int addr;
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       addr = sqliteVdbeCurrentAddr(v);
 | |
|       sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
 | |
|       sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
 | |
|       if( pExpr->pSelect ){
 | |
|         sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
 | |
|       }else{
 | |
|         sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_BETWEEN: {
 | |
|       int addr;
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteVdbeAddOp(v, OP_Dup, 0, 0);
 | |
|       sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
 | |
|       addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
 | |
|       sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
 | |
|       sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
 | |
|       sqliteVdbeAddOp(v, OP_Integer, 0, 0);
 | |
|       sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
 | |
|       sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       sqliteExprCode(pParse, pExpr);
 | |
|       sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a boolean expression such that a jump is made
 | |
| ** to the label "dest" if the expression is false but execution
 | |
| ** continues straight thru if the expression is true.
 | |
| **
 | |
| ** If the expression evaluates to NULL (neither true nor false) then
 | |
| ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
 | |
| */
 | |
| void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op = 0;
 | |
|   if( v==0 || pExpr==0 ) return;
 | |
|   switch( pExpr->op ){
 | |
|     case TK_LT:       op = OP_Ge;       break;
 | |
|     case TK_LE:       op = OP_Gt;       break;
 | |
|     case TK_GT:       op = OP_Le;       break;
 | |
|     case TK_GE:       op = OP_Lt;       break;
 | |
|     case TK_NE:       op = OP_Eq;       break;
 | |
|     case TK_EQ:       op = OP_Ne;       break;
 | |
|     case TK_ISNULL:   op = OP_NotNull;  break;
 | |
|     case TK_NOTNULL:  op = OP_IsNull;   break;
 | |
|     default:  break;
 | |
|   }
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AND: {
 | |
|       sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_OR: {
 | |
|       int d2 = sqliteVdbeMakeLabel(v);
 | |
|       sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | |
|       sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       sqliteVdbeResolveLabel(v, d2);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NOT: {
 | |
|       sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
 | |
|         /* Convert numeric comparison opcodes into text comparison opcodes.
 | |
|         ** This step depends on the fact that the text comparision opcodes are
 | |
|         ** always 6 greater than their corresponding numeric comparison
 | |
|         ** opcodes.
 | |
|         */
 | |
|         assert( OP_Eq+6 == OP_StrEq );
 | |
|         op += 6;
 | |
|       }
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteExprCode(pParse, pExpr->pRight);
 | |
|       sqliteVdbeAddOp(v, op, jumpIfNull, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteVdbeAddOp(v, op, 1, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_IN: {
 | |
|       int addr;
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       addr = sqliteVdbeCurrentAddr(v);
 | |
|       sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
 | |
|       sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
 | |
|       if( pExpr->pSelect ){
 | |
|         sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
 | |
|       }else{
 | |
|         sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_BETWEEN: {
 | |
|       int addr;
 | |
|       sqliteExprCode(pParse, pExpr->pLeft);
 | |
|       sqliteVdbeAddOp(v, OP_Dup, 0, 0);
 | |
|       sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
 | |
|       addr = sqliteVdbeCurrentAddr(v);
 | |
|       sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
 | |
|       sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       sqliteVdbeAddOp(v, OP_Goto, 0, dest);
 | |
|       sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
 | |
|       sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       sqliteExprCode(pParse, pExpr);
 | |
|       sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
 | |
| ** if they are identical and return FALSE if they differ in any way.
 | |
| */
 | |
| int sqliteExprCompare(Expr *pA, Expr *pB){
 | |
|   int i;
 | |
|   if( pA==0 ){
 | |
|     return pB==0;
 | |
|   }else if( pB==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pA->op!=pB->op ) return 0;
 | |
|   if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
 | |
|   if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
 | |
|   if( pA->pList ){
 | |
|     if( pB->pList==0 ) return 0;
 | |
|     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
 | |
|     for(i=0; i<pA->pList->nExpr; i++){
 | |
|       if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|   }else if( pB->pList ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pA->pSelect || pB->pSelect ) return 0;
 | |
|   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
 | |
|   if( pA->token.z ){
 | |
|     if( pB->token.z==0 ) return 0;
 | |
|     if( pB->token.n!=pA->token.n ) return 0;
 | |
|     if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the pParse->aAgg[] array and return its index.
 | |
| */
 | |
| static int appendAggInfo(Parse *pParse){
 | |
|   if( (pParse->nAgg & 0x7)==0 ){
 | |
|     int amt = pParse->nAgg + 8;
 | |
|     AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
 | |
|     if( aAgg==0 ){
 | |
|       return -1;
 | |
|     }
 | |
|     pParse->aAgg = aAgg;
 | |
|   }
 | |
|   memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
 | |
|   return pParse->nAgg++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Analyze the given expression looking for aggregate functions and
 | |
| ** for variables that need to be added to the pParse->aAgg[] array.
 | |
| ** Make additional entries to the pParse->aAgg[] array as necessary.
 | |
| **
 | |
| ** This routine should only be called after the expression has been
 | |
| ** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
 | |
| **
 | |
| ** If errors are seen, leave an error message in zErrMsg and return
 | |
| ** the number of errors.
 | |
| */
 | |
| int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
 | |
|   int i;
 | |
|   AggExpr *aAgg;
 | |
|   int nErr = 0;
 | |
| 
 | |
|   if( pExpr==0 ) return 0;
 | |
|   switch( pExpr->op ){
 | |
|     case TK_COLUMN: {
 | |
|       aAgg = pParse->aAgg;
 | |
|       for(i=0; i<pParse->nAgg; i++){
 | |
|         if( aAgg[i].isAgg ) continue;
 | |
|         if( aAgg[i].pExpr->iTable==pExpr->iTable
 | |
|          && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( i>=pParse->nAgg ){
 | |
|         i = appendAggInfo(pParse);
 | |
|         if( i<0 ) return 1;
 | |
|         pParse->aAgg[i].isAgg = 0;
 | |
|         pParse->aAgg[i].pExpr = pExpr;
 | |
|       }
 | |
|       pExpr->iAgg = i;
 | |
|       break;
 | |
|     }
 | |
|     case TK_AGG_FUNCTION: {
 | |
|       aAgg = pParse->aAgg;
 | |
|       for(i=0; i<pParse->nAgg; i++){
 | |
|         if( !aAgg[i].isAgg ) continue;
 | |
|         if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( i>=pParse->nAgg ){
 | |
|         i = appendAggInfo(pParse);
 | |
|         if( i<0 ) return 1;
 | |
|         pParse->aAgg[i].isAgg = 1;
 | |
|         pParse->aAgg[i].pExpr = pExpr;
 | |
|         pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
 | |
|              pExpr->token.z, pExpr->token.n,
 | |
|              pExpr->pList ? pExpr->pList->nExpr : 0, 0);
 | |
|       }
 | |
|       pExpr->iAgg = i;
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       if( pExpr->pLeft ){
 | |
|         nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
 | |
|       }
 | |
|       if( nErr==0 && pExpr->pRight ){
 | |
|         nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
 | |
|       }
 | |
|       if( nErr==0 && pExpr->pList ){
 | |
|         int n = pExpr->pList->nExpr;
 | |
|         int i;
 | |
|         for(i=0; nErr==0 && i<n; i++){
 | |
|           nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return nErr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate a user function given a name and a number of arguments.
 | |
| ** Return a pointer to the FuncDef structure that defines that
 | |
| ** function, or return NULL if the function does not exist.
 | |
| **
 | |
| ** If the createFlag argument is true, then a new (blank) FuncDef
 | |
| ** structure is created and liked into the "db" structure if a
 | |
| ** no matching function previously existed.  When createFlag is true
 | |
| ** and the nArg parameter is -1, then only a function that accepts
 | |
| ** any number of arguments will be returned.
 | |
| **
 | |
| ** If createFlag is false and nArg is -1, then the first valid
 | |
| ** function found is returned.  A function is valid if either xFunc
 | |
| ** or xStep is non-zero.
 | |
| */
 | |
| FuncDef *sqliteFindFunction(
 | |
|   sqlite *db,        /* An open database */
 | |
|   const char *zName, /* Name of the function.  Not null-terminated */
 | |
|   int nName,         /* Number of characters in the name */
 | |
|   int nArg,          /* Number of arguments.  -1 means any number */
 | |
|   int createFlag     /* Create new entry if true and does not otherwise exist */
 | |
| ){
 | |
|   FuncDef *pFirst, *p, *pMaybe;
 | |
|   pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
 | |
|   if( p && !createFlag && nArg<0 ){
 | |
|     while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
 | |
|     return p;
 | |
|   }
 | |
|   pMaybe = 0;
 | |
|   while( p && p->nArg!=nArg ){
 | |
|     if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
 | |
|     p = p->pNext;
 | |
|   }
 | |
|   if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( p==0 && pMaybe ){
 | |
|     assert( createFlag==0 );
 | |
|     return pMaybe;
 | |
|   }
 | |
|   if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
 | |
|     p->nArg = nArg;
 | |
|     p->pNext = pFirst;
 | |
|     p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
 | |
|     sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
 | |
|   }
 | |
|   return p;
 | |
| }
 |