Files correlati : sqlite Ricompilazione Demo : [ ] Commento : Passaggio da Sqlite 2 a Sqlite 3.3.5 git-svn-id: svn://10.65.10.50/trunk@13902 c028cbd2-c16b-5b4b-a496-9718f37d4682
		
			
				
	
	
		
			1976 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1976 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
** 2003 September 6
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** This file contains code used for creating, destroying, and populating
 | 
						|
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
 | 
						|
** to version 2.8.7, all this code was combined into the vdbe.c source file.
 | 
						|
** But that file was getting too big so this subroutines were split out.
 | 
						|
*/
 | 
						|
#include "sqliteInt.h"
 | 
						|
#include "os.h"
 | 
						|
#include <ctype.h>
 | 
						|
#include "vdbeInt.h"
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** When debugging the code generator in a symbolic debugger, one can
 | 
						|
** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
 | 
						|
** as they are added to the instruction stream.
 | 
						|
*/
 | 
						|
#ifdef SQLITE_DEBUG
 | 
						|
int sqlite3_vdbe_addop_trace = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Create a new virtual database engine.
 | 
						|
*/
 | 
						|
Vdbe *sqlite3VdbeCreate(sqlite3 *db){
 | 
						|
  Vdbe *p;
 | 
						|
  p = sqliteMalloc( sizeof(Vdbe) );
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  p->db = db;
 | 
						|
  if( db->pVdbe ){
 | 
						|
    db->pVdbe->pPrev = p;
 | 
						|
  }
 | 
						|
  p->pNext = db->pVdbe;
 | 
						|
  p->pPrev = 0;
 | 
						|
  db->pVdbe = p;
 | 
						|
  p->magic = VDBE_MAGIC_INIT;
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Turn tracing on or off
 | 
						|
*/
 | 
						|
void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
 | 
						|
  p->trace = trace;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Resize the Vdbe.aOp array so that it contains at least N
 | 
						|
** elements. If the Vdbe is in VDBE_MAGIC_RUN state, then
 | 
						|
** the Vdbe.aOp array will be sized to contain exactly N
 | 
						|
** elements. Vdbe.nOpAlloc is set to reflect the new size of
 | 
						|
** the array.
 | 
						|
**
 | 
						|
** If an out-of-memory error occurs while resizing the array,
 | 
						|
** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
 | 
						|
** any opcodes already allocated can be correctly deallocated
 | 
						|
** along with the rest of the Vdbe).
 | 
						|
*/
 | 
						|
static void resizeOpArray(Vdbe *p, int N){
 | 
						|
  int runMode = p->magic==VDBE_MAGIC_RUN;
 | 
						|
  if( runMode || p->nOpAlloc<N ){
 | 
						|
    VdbeOp *pNew;
 | 
						|
    int nNew = N + 100*(!runMode);
 | 
						|
    int oldSize = p->nOpAlloc;
 | 
						|
    pNew = sqliteRealloc(p->aOp, nNew*sizeof(Op));
 | 
						|
    if( pNew ){
 | 
						|
      p->nOpAlloc = nNew;
 | 
						|
      p->aOp = pNew;
 | 
						|
      if( nNew>oldSize ){
 | 
						|
        memset(&p->aOp[oldSize], 0, (nNew-oldSize)*sizeof(Op));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add a new instruction to the list of instructions current in the
 | 
						|
** VDBE.  Return the address of the new instruction.
 | 
						|
**
 | 
						|
** Parameters:
 | 
						|
**
 | 
						|
**    p               Pointer to the VDBE
 | 
						|
**
 | 
						|
**    op              The opcode for this instruction
 | 
						|
**
 | 
						|
**    p1, p2          First two of the three possible operands.
 | 
						|
**
 | 
						|
** Use the sqlite3VdbeResolveLabel() function to fix an address and
 | 
						|
** the sqlite3VdbeChangeP3() function to change the value of the P3
 | 
						|
** operand.
 | 
						|
*/
 | 
						|
int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
 | 
						|
  int i;
 | 
						|
  VdbeOp *pOp;
 | 
						|
 | 
						|
  i = p->nOp;
 | 
						|
  p->nOp++;
 | 
						|
  assert( p->magic==VDBE_MAGIC_INIT );
 | 
						|
  if( p->nOpAlloc<=i ){
 | 
						|
    resizeOpArray(p, i+1);
 | 
						|
    if( sqlite3MallocFailed() ){
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pOp = &p->aOp[i];
 | 
						|
  pOp->opcode = op;
 | 
						|
  pOp->p1 = p1;
 | 
						|
  pOp->p2 = p2;
 | 
						|
  pOp->p3 = 0;
 | 
						|
  pOp->p3type = P3_NOTUSED;
 | 
						|
  p->expired = 0;
 | 
						|
#ifdef SQLITE_DEBUG
 | 
						|
  if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
 | 
						|
#endif
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add an opcode that includes the p3 value.
 | 
						|
*/
 | 
						|
int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
 | 
						|
  int addr = sqlite3VdbeAddOp(p, op, p1, p2);
 | 
						|
  sqlite3VdbeChangeP3(p, addr, zP3, p3type);
 | 
						|
  return addr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Create a new symbolic label for an instruction that has yet to be
 | 
						|
** coded.  The symbolic label is really just a negative number.  The
 | 
						|
** label can be used as the P2 value of an operation.  Later, when
 | 
						|
** the label is resolved to a specific address, the VDBE will scan
 | 
						|
** through its operation list and change all values of P2 which match
 | 
						|
** the label into the resolved address.
 | 
						|
**
 | 
						|
** The VDBE knows that a P2 value is a label because labels are
 | 
						|
** always negative and P2 values are suppose to be non-negative.
 | 
						|
** Hence, a negative P2 value is a label that has yet to be resolved.
 | 
						|
**
 | 
						|
** Zero is returned if a malloc() fails.
 | 
						|
*/
 | 
						|
int sqlite3VdbeMakeLabel(Vdbe *p){
 | 
						|
  int i;
 | 
						|
  i = p->nLabel++;
 | 
						|
  assert( p->magic==VDBE_MAGIC_INIT );
 | 
						|
  if( i>=p->nLabelAlloc ){
 | 
						|
    p->nLabelAlloc = p->nLabelAlloc*2 + 10;
 | 
						|
    sqliteReallocOrFree((void**)&p->aLabel,
 | 
						|
                          p->nLabelAlloc*sizeof(p->aLabel[0]));
 | 
						|
  }
 | 
						|
  if( p->aLabel ){
 | 
						|
    p->aLabel[i] = -1;
 | 
						|
  }
 | 
						|
  return -1-i;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Resolve label "x" to be the address of the next instruction to
 | 
						|
** be inserted.  The parameter "x" must have been obtained from
 | 
						|
** a prior call to sqlite3VdbeMakeLabel().
 | 
						|
*/
 | 
						|
void sqlite3VdbeResolveLabel(Vdbe *p, int x){
 | 
						|
  int j = -1-x;
 | 
						|
  assert( p->magic==VDBE_MAGIC_INIT );
 | 
						|
  assert( j>=0 && j<p->nLabel );
 | 
						|
  if( p->aLabel ){
 | 
						|
    p->aLabel[j] = p->nOp;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return non-zero if opcode 'op' is guarenteed not to push more values
 | 
						|
** onto the VDBE stack than it pops off.
 | 
						|
*/
 | 
						|
static int opcodeNoPush(u8 op){
 | 
						|
  /* The 10 NOPUSH_MASK_n constants are defined in the automatically
 | 
						|
  ** generated header file opcodes.h. Each is a 16-bit bitmask, one
 | 
						|
  ** bit corresponding to each opcode implemented by the virtual
 | 
						|
  ** machine in vdbe.c. The bit is true if the word "no-push" appears
 | 
						|
  ** in a comment on the same line as the "case OP_XXX:" in 
 | 
						|
  ** sqlite3VdbeExec() in vdbe.c.
 | 
						|
  **
 | 
						|
  ** If the bit is true, then the corresponding opcode is guarenteed not
 | 
						|
  ** to grow the stack when it is executed. Otherwise, it may grow the
 | 
						|
  ** stack by at most one entry.
 | 
						|
  **
 | 
						|
  ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
 | 
						|
  ** one bit for opcodes 16 to 31, and so on.
 | 
						|
  **
 | 
						|
  ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h 
 | 
						|
  ** because the file is generated by an awk program. Awk manipulates
 | 
						|
  ** all numbers as floating-point and we don't want to risk a rounding
 | 
						|
  ** error if someone builds with an awk that uses (for example) 32-bit 
 | 
						|
  ** IEEE floats.
 | 
						|
  */ 
 | 
						|
  static const u32 masks[5] = {
 | 
						|
    NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16),
 | 
						|
    NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16),
 | 
						|
    NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16),
 | 
						|
    NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16),
 | 
						|
    NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16)
 | 
						|
  };
 | 
						|
  assert( op<32*5 );
 | 
						|
  return (masks[op>>5] & (1<<(op&0x1F)));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
int sqlite3VdbeOpcodeNoPush(u8 op){
 | 
						|
  return opcodeNoPush(op);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Loop through the program looking for P2 values that are negative.
 | 
						|
** Each such value is a label.  Resolve the label by setting the P2
 | 
						|
** value to its correct non-zero value.
 | 
						|
**
 | 
						|
** This routine is called once after all opcodes have been inserted.
 | 
						|
**
 | 
						|
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
 | 
						|
** to an OP_Function or OP_AggStep opcode. This is used by 
 | 
						|
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
 | 
						|
**
 | 
						|
** The integer *pMaxStack is set to the maximum number of vdbe stack
 | 
						|
** entries that static analysis reveals this program might need.
 | 
						|
**
 | 
						|
** This routine also does the following optimization:  It scans for
 | 
						|
** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for
 | 
						|
** IdxInsert instructions where P2!=0.  If no such instruction is
 | 
						|
** found, then every Statement instruction is changed to a Noop.  In
 | 
						|
** this way, we avoid creating the statement journal file unnecessarily.
 | 
						|
*/
 | 
						|
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
 | 
						|
  int i;
 | 
						|
  int nMaxArgs = 0;
 | 
						|
  int nMaxStack = p->nOp;
 | 
						|
  Op *pOp;
 | 
						|
  int *aLabel = p->aLabel;
 | 
						|
  int doesStatementRollback = 0;
 | 
						|
  int hasStatementBegin = 0;
 | 
						|
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | 
						|
    u8 opcode = pOp->opcode;
 | 
						|
 | 
						|
    if( opcode==OP_Function || opcode==OP_AggStep ){
 | 
						|
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
 | 
						|
    }else if( opcode==OP_Halt ){
 | 
						|
      if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
 | 
						|
        doesStatementRollback = 1;
 | 
						|
      }
 | 
						|
    }else if( opcode==OP_IdxInsert ){
 | 
						|
      if( pOp->p2 ){
 | 
						|
        doesStatementRollback = 1;
 | 
						|
      }
 | 
						|
    }else if( opcode==OP_Statement ){
 | 
						|
      hasStatementBegin = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if( opcodeNoPush(opcode) ){
 | 
						|
      nMaxStack--;
 | 
						|
    }
 | 
						|
 | 
						|
    if( pOp->p2>=0 ) continue;
 | 
						|
    assert( -1-pOp->p2<p->nLabel );
 | 
						|
    pOp->p2 = aLabel[-1-pOp->p2];
 | 
						|
  }
 | 
						|
  sqliteFree(p->aLabel);
 | 
						|
  p->aLabel = 0;
 | 
						|
 | 
						|
  *pMaxFuncArgs = nMaxArgs;
 | 
						|
  *pMaxStack = nMaxStack;
 | 
						|
 | 
						|
  /* If we never rollback a statement transaction, then statement
 | 
						|
  ** transactions are not needed.  So change every OP_Statement
 | 
						|
  ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
 | 
						|
  ** which can be expensive on some platforms.
 | 
						|
  */
 | 
						|
  if( hasStatementBegin && !doesStatementRollback ){
 | 
						|
    for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | 
						|
      if( pOp->opcode==OP_Statement ){
 | 
						|
        pOp->opcode = OP_Noop;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the address of the next instruction to be inserted.
 | 
						|
*/
 | 
						|
int sqlite3VdbeCurrentAddr(Vdbe *p){
 | 
						|
  assert( p->magic==VDBE_MAGIC_INIT );
 | 
						|
  return p->nOp;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add a whole list of operations to the operation stack.  Return the
 | 
						|
** address of the first operation added.
 | 
						|
*/
 | 
						|
int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
 | 
						|
  int addr;
 | 
						|
  assert( p->magic==VDBE_MAGIC_INIT );
 | 
						|
  resizeOpArray(p, p->nOp + nOp);
 | 
						|
  if( sqlite3MallocFailed() ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  addr = p->nOp;
 | 
						|
  if( nOp>0 ){
 | 
						|
    int i;
 | 
						|
    VdbeOpList const *pIn = aOp;
 | 
						|
    for(i=0; i<nOp; i++, pIn++){
 | 
						|
      int p2 = pIn->p2;
 | 
						|
      VdbeOp *pOut = &p->aOp[i+addr];
 | 
						|
      pOut->opcode = pIn->opcode;
 | 
						|
      pOut->p1 = pIn->p1;
 | 
						|
      pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
 | 
						|
      pOut->p3 = pIn->p3;
 | 
						|
      pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
 | 
						|
#ifdef SQLITE_DEBUG
 | 
						|
      if( sqlite3_vdbe_addop_trace ){
 | 
						|
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
 | 
						|
      }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    p->nOp += nOp;
 | 
						|
  }
 | 
						|
  return addr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Change the value of the P1 operand for a specific instruction.
 | 
						|
** This routine is useful when a large program is loaded from a
 | 
						|
** static array using sqlite3VdbeAddOpList but we want to make a
 | 
						|
** few minor changes to the program.
 | 
						|
*/
 | 
						|
void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
 | 
						|
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | 
						|
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | 
						|
    p->aOp[addr].p1 = val;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Change the value of the P2 operand for a specific instruction.
 | 
						|
** This routine is useful for setting a jump destination.
 | 
						|
*/
 | 
						|
void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
 | 
						|
  assert( val>=0 );
 | 
						|
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | 
						|
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | 
						|
    p->aOp[addr].p2 = val;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Change the P2 operand of instruction addr so that it points to
 | 
						|
** the address of the next instruction to be coded.
 | 
						|
*/
 | 
						|
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
 | 
						|
  sqlite3VdbeChangeP2(p, addr, p->nOp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete a P3 value if necessary.
 | 
						|
*/
 | 
						|
static void freeP3(int p3type, void *p3){
 | 
						|
  if( p3 ){
 | 
						|
    switch( p3type ){
 | 
						|
      case P3_DYNAMIC:
 | 
						|
      case P3_KEYINFO:
 | 
						|
      case P3_KEYINFO_HANDOFF: {
 | 
						|
        sqliteFree(p3);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case P3_VDBEFUNC: {
 | 
						|
        VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
 | 
						|
        sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
 | 
						|
        sqliteFree(pVdbeFunc);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case P3_MEM: {
 | 
						|
        sqlite3ValueFree((sqlite3_value*)p3);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Change N opcodes starting at addr to No-ops.
 | 
						|
*/
 | 
						|
void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
 | 
						|
  VdbeOp *pOp = &p->aOp[addr];
 | 
						|
  while( N-- ){
 | 
						|
    freeP3(pOp->p3type, pOp->p3);
 | 
						|
    memset(pOp, 0, sizeof(pOp[0]));
 | 
						|
    pOp->opcode = OP_Noop;
 | 
						|
    pOp++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Change the value of the P3 operand for a specific instruction.
 | 
						|
** This routine is useful when a large program is loaded from a
 | 
						|
** static array using sqlite3VdbeAddOpList but we want to make a
 | 
						|
** few minor changes to the program.
 | 
						|
**
 | 
						|
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
 | 
						|
** the string is made into memory obtained from sqliteMalloc().
 | 
						|
** A value of n==0 means copy bytes of zP3 up to and including the
 | 
						|
** first null byte.  If n>0 then copy n+1 bytes of zP3.
 | 
						|
**
 | 
						|
** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
 | 
						|
** A copy is made of the KeyInfo structure into memory obtained from
 | 
						|
** sqliteMalloc, to be freed when the Vdbe is finalized.
 | 
						|
** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
 | 
						|
** stored in memory that the caller has obtained from sqliteMalloc. The 
 | 
						|
** caller should not free the allocation, it will be freed when the Vdbe is
 | 
						|
** finalized.
 | 
						|
** 
 | 
						|
** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
 | 
						|
** to a string or structure that is guaranteed to exist for the lifetime of
 | 
						|
** the Vdbe. In these cases we can just copy the pointer.
 | 
						|
**
 | 
						|
** If addr<0 then change P3 on the most recently inserted instruction.
 | 
						|
*/
 | 
						|
void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
 | 
						|
  Op *pOp;
 | 
						|
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | 
						|
  if( p==0 || p->aOp==0 || sqlite3MallocFailed() ){
 | 
						|
    if (n != P3_KEYINFO) {
 | 
						|
      freeP3(n, (void*)*(char**)&zP3);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if( addr<0 || addr>=p->nOp ){
 | 
						|
    addr = p->nOp - 1;
 | 
						|
    if( addr<0 ) return;
 | 
						|
  }
 | 
						|
  pOp = &p->aOp[addr];
 | 
						|
  freeP3(pOp->p3type, pOp->p3);
 | 
						|
  pOp->p3 = 0;
 | 
						|
  if( zP3==0 ){
 | 
						|
    pOp->p3 = 0;
 | 
						|
    pOp->p3type = P3_NOTUSED;
 | 
						|
  }else if( n==P3_KEYINFO ){
 | 
						|
    KeyInfo *pKeyInfo;
 | 
						|
    int nField, nByte;
 | 
						|
 | 
						|
    nField = ((KeyInfo*)zP3)->nField;
 | 
						|
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
 | 
						|
    pKeyInfo = sqliteMallocRaw( nByte );
 | 
						|
    pOp->p3 = (char*)pKeyInfo;
 | 
						|
    if( pKeyInfo ){
 | 
						|
      unsigned char *aSortOrder;
 | 
						|
      memcpy(pKeyInfo, zP3, nByte);
 | 
						|
      aSortOrder = pKeyInfo->aSortOrder;
 | 
						|
      if( aSortOrder ){
 | 
						|
        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
 | 
						|
        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
 | 
						|
      }
 | 
						|
      pOp->p3type = P3_KEYINFO;
 | 
						|
    }else{
 | 
						|
      pOp->p3type = P3_NOTUSED;
 | 
						|
    }
 | 
						|
  }else if( n==P3_KEYINFO_HANDOFF ){
 | 
						|
    pOp->p3 = (char*)zP3;
 | 
						|
    pOp->p3type = P3_KEYINFO;
 | 
						|
  }else if( n<0 ){
 | 
						|
    pOp->p3 = (char*)zP3;
 | 
						|
    pOp->p3type = n;
 | 
						|
  }else{
 | 
						|
    if( n==0 ) n = strlen(zP3);
 | 
						|
    pOp->p3 = sqliteStrNDup(zP3, n);
 | 
						|
    pOp->p3type = P3_DYNAMIC;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/*
 | 
						|
** Replace the P3 field of the most recently coded instruction with
 | 
						|
** comment text.
 | 
						|
*/
 | 
						|
void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
 | 
						|
  va_list ap;
 | 
						|
  assert( p->nOp>0 );
 | 
						|
  assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 
 | 
						|
          || sqlite3MallocFailed() );
 | 
						|
  va_start(ap, zFormat);
 | 
						|
  sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(zFormat, ap), P3_DYNAMIC);
 | 
						|
  va_end(ap);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Return the opcode for a given address.
 | 
						|
*/
 | 
						|
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
 | 
						|
  assert( p->magic==VDBE_MAGIC_INIT );
 | 
						|
  assert( addr>=0 && addr<p->nOp );
 | 
						|
  return &p->aOp[addr];
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
 | 
						|
     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | 
						|
/*
 | 
						|
** Compute a string that describes the P3 parameter for an opcode.
 | 
						|
** Use zTemp for any required temporary buffer space.
 | 
						|
*/
 | 
						|
static char *displayP3(Op *pOp, char *zTemp, int nTemp){
 | 
						|
  char *zP3;
 | 
						|
  assert( nTemp>=20 );
 | 
						|
  switch( pOp->p3type ){
 | 
						|
    case P3_KEYINFO: {
 | 
						|
      int i, j;
 | 
						|
      KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
 | 
						|
      sprintf(zTemp, "keyinfo(%d", pKeyInfo->nField);
 | 
						|
      i = strlen(zTemp);
 | 
						|
      for(j=0; j<pKeyInfo->nField; j++){
 | 
						|
        CollSeq *pColl = pKeyInfo->aColl[j];
 | 
						|
        if( pColl ){
 | 
						|
          int n = strlen(pColl->zName);
 | 
						|
          if( i+n>nTemp-6 ){
 | 
						|
            strcpy(&zTemp[i],",...");
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          zTemp[i++] = ',';
 | 
						|
          if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
 | 
						|
            zTemp[i++] = '-';
 | 
						|
          }
 | 
						|
          strcpy(&zTemp[i], pColl->zName);
 | 
						|
          i += n;
 | 
						|
        }else if( i+4<nTemp-6 ){
 | 
						|
          strcpy(&zTemp[i],",nil");
 | 
						|
          i += 4;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      zTemp[i++] = ')';
 | 
						|
      zTemp[i] = 0;
 | 
						|
      assert( i<nTemp );
 | 
						|
      zP3 = zTemp;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case P3_COLLSEQ: {
 | 
						|
      CollSeq *pColl = (CollSeq*)pOp->p3;
 | 
						|
      sprintf(zTemp, "collseq(%.20s)", pColl->zName);
 | 
						|
      zP3 = zTemp;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case P3_FUNCDEF: {
 | 
						|
      FuncDef *pDef = (FuncDef*)pOp->p3;
 | 
						|
      char zNum[30];
 | 
						|
      sprintf(zTemp, "%.*s", nTemp, pDef->zName);
 | 
						|
      sprintf(zNum,"(%d)", pDef->nArg);
 | 
						|
      if( strlen(zTemp)+strlen(zNum)+1<=nTemp ){
 | 
						|
        strcat(zTemp, zNum);
 | 
						|
      }
 | 
						|
      zP3 = zTemp;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      zP3 = pOp->p3;
 | 
						|
      if( zP3==0 || pOp->opcode==OP_Noop ){
 | 
						|
        zP3 = "";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return zP3;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | 
						|
/*
 | 
						|
** Print a single opcode.  This routine is used for debugging only.
 | 
						|
*/
 | 
						|
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
 | 
						|
  char *zP3;
 | 
						|
  char zPtr[50];
 | 
						|
  static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
 | 
						|
  if( pOut==0 ) pOut = stdout;
 | 
						|
  zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
 | 
						|
  fprintf(pOut, zFormat1,
 | 
						|
      pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3);
 | 
						|
  fflush(pOut);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Release an array of N Mem elements
 | 
						|
*/
 | 
						|
static void releaseMemArray(Mem *p, int N){
 | 
						|
  if( p ){
 | 
						|
    while( N-->0 ){
 | 
						|
      sqlite3VdbeMemRelease(p++);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_EXPLAIN
 | 
						|
/*
 | 
						|
** Give a listing of the program in the virtual machine.
 | 
						|
**
 | 
						|
** The interface is the same as sqlite3VdbeExec().  But instead of
 | 
						|
** running the code, it invokes the callback once for each instruction.
 | 
						|
** This feature is used to implement "EXPLAIN".
 | 
						|
*/
 | 
						|
int sqlite3VdbeList(
 | 
						|
  Vdbe *p                   /* The VDBE */
 | 
						|
){
 | 
						|
  sqlite3 *db = p->db;
 | 
						|
  int i;
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
 | 
						|
  assert( p->explain );
 | 
						|
  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
 | 
						|
  assert( db->magic==SQLITE_MAGIC_BUSY );
 | 
						|
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | 
						|
 | 
						|
  /* Even though this opcode does not put dynamic strings onto the
 | 
						|
  ** the stack, they may become dynamic if the user calls
 | 
						|
  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
 | 
						|
  */
 | 
						|
  if( p->pTos==&p->aStack[4] ){
 | 
						|
    releaseMemArray(p->aStack, 5);
 | 
						|
  }
 | 
						|
  p->resOnStack = 0;
 | 
						|
 | 
						|
  do{
 | 
						|
    i = p->pc++;
 | 
						|
  }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
 | 
						|
  if( i>=p->nOp ){
 | 
						|
    p->rc = SQLITE_OK;
 | 
						|
    rc = SQLITE_DONE;
 | 
						|
  }else if( db->flags & SQLITE_Interrupt ){
 | 
						|
    db->flags &= ~SQLITE_Interrupt;
 | 
						|
    p->rc = SQLITE_INTERRUPT;
 | 
						|
    rc = SQLITE_ERROR;
 | 
						|
    sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
 | 
						|
  }else{
 | 
						|
    Op *pOp = &p->aOp[i];
 | 
						|
    Mem *pMem = p->aStack;
 | 
						|
    pMem->flags = MEM_Int;
 | 
						|
    pMem->type = SQLITE_INTEGER;
 | 
						|
    pMem->i = i;                                /* Program counter */
 | 
						|
    pMem++;
 | 
						|
 | 
						|
    pMem->flags = MEM_Static|MEM_Str|MEM_Term;
 | 
						|
    pMem->z = sqlite3OpcodeNames[pOp->opcode];  /* Opcode */
 | 
						|
    pMem->n = strlen(pMem->z);
 | 
						|
    pMem->type = SQLITE_TEXT;
 | 
						|
    pMem->enc = SQLITE_UTF8;
 | 
						|
    pMem++;
 | 
						|
 | 
						|
    pMem->flags = MEM_Int;
 | 
						|
    pMem->i = pOp->p1;                          /* P1 */
 | 
						|
    pMem->type = SQLITE_INTEGER;
 | 
						|
    pMem++;
 | 
						|
 | 
						|
    pMem->flags = MEM_Int;
 | 
						|
    pMem->i = pOp->p2;                          /* P2 */
 | 
						|
    pMem->type = SQLITE_INTEGER;
 | 
						|
    pMem++;
 | 
						|
 | 
						|
    pMem->flags = MEM_Ephem|MEM_Str|MEM_Term;   /* P3 */
 | 
						|
    pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
 | 
						|
    pMem->n = strlen(pMem->z);
 | 
						|
    pMem->type = SQLITE_TEXT;
 | 
						|
    pMem->enc = SQLITE_UTF8;
 | 
						|
 | 
						|
    p->nResColumn = 5 - 2*(p->explain-1);
 | 
						|
    p->pTos = pMem;
 | 
						|
    p->rc = SQLITE_OK;
 | 
						|
    p->resOnStack = 1;
 | 
						|
    rc = SQLITE_ROW;
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
#endif /* SQLITE_OMIT_EXPLAIN */
 | 
						|
 | 
						|
/*
 | 
						|
** Print the SQL that was used to generate a VDBE program.
 | 
						|
*/
 | 
						|
void sqlite3VdbePrintSql(Vdbe *p){
 | 
						|
#ifdef SQLITE_DEBUG
 | 
						|
  int nOp = p->nOp;
 | 
						|
  VdbeOp *pOp;
 | 
						|
  if( nOp<1 ) return;
 | 
						|
  pOp = &p->aOp[nOp-1];
 | 
						|
  if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
 | 
						|
    const char *z = pOp->p3;
 | 
						|
    while( isspace(*(u8*)z) ) z++;
 | 
						|
    printf("SQL: [%s]\n", z);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Prepare a virtual machine for execution.  This involves things such
 | 
						|
** as allocating stack space and initializing the program counter.
 | 
						|
** After the VDBE has be prepped, it can be executed by one or more
 | 
						|
** calls to sqlite3VdbeExec().  
 | 
						|
**
 | 
						|
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
 | 
						|
** VDBE_MAGIC_RUN.
 | 
						|
*/
 | 
						|
void sqlite3VdbeMakeReady(
 | 
						|
  Vdbe *p,                       /* The VDBE */
 | 
						|
  int nVar,                      /* Number of '?' see in the SQL statement */
 | 
						|
  int nMem,                      /* Number of memory cells to allocate */
 | 
						|
  int nCursor,                   /* Number of cursors to allocate */
 | 
						|
  int isExplain                  /* True if the EXPLAIN keywords is present */
 | 
						|
){
 | 
						|
  int n;
 | 
						|
 | 
						|
  assert( p!=0 );
 | 
						|
  assert( p->magic==VDBE_MAGIC_INIT );
 | 
						|
 | 
						|
  /* There should be at least one opcode.
 | 
						|
  */
 | 
						|
  assert( p->nOp>0 );
 | 
						|
 | 
						|
  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
 | 
						|
   * is because the call to resizeOpArray() below may shrink the
 | 
						|
   * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
 | 
						|
   * state.
 | 
						|
   */
 | 
						|
  p->magic = VDBE_MAGIC_RUN;
 | 
						|
 | 
						|
  /* No instruction ever pushes more than a single element onto the
 | 
						|
  ** stack.  And the stack never grows on successive executions of the
 | 
						|
  ** same loop.  So the total number of instructions is an upper bound
 | 
						|
  ** on the maximum stack depth required.  (Added later:)  The
 | 
						|
  ** resolveP2Values() call computes a tighter upper bound on the
 | 
						|
  ** stack size.
 | 
						|
  **
 | 
						|
  ** Allocation all the stack space we will ever need.
 | 
						|
  */
 | 
						|
  if( p->aStack==0 ){
 | 
						|
    int nArg;       /* Maximum number of args passed to a user function. */
 | 
						|
    int nStack;     /* Maximum number of stack entries required */
 | 
						|
    resolveP2Values(p, &nArg, &nStack);
 | 
						|
    resizeOpArray(p, p->nOp);
 | 
						|
    assert( nVar>=0 );
 | 
						|
    assert( nStack<p->nOp );
 | 
						|
    nStack = isExplain ? 10 : nStack;
 | 
						|
    p->aStack = sqliteMalloc(
 | 
						|
        nStack*sizeof(p->aStack[0])    /* aStack */
 | 
						|
      + nArg*sizeof(Mem*)              /* apArg */
 | 
						|
      + nVar*sizeof(Mem)               /* aVar */
 | 
						|
      + nVar*sizeof(char*)             /* azVar */
 | 
						|
      + nMem*sizeof(Mem)               /* aMem */
 | 
						|
      + nCursor*sizeof(Cursor*)        /* apCsr */
 | 
						|
    );
 | 
						|
    if( !sqlite3MallocFailed() ){
 | 
						|
      p->aMem = &p->aStack[nStack];
 | 
						|
      p->nMem = nMem;
 | 
						|
      p->aVar = &p->aMem[nMem];
 | 
						|
      p->nVar = nVar;
 | 
						|
      p->okVar = 0;
 | 
						|
      p->apArg = (Mem**)&p->aVar[nVar];
 | 
						|
      p->azVar = (char**)&p->apArg[nArg];
 | 
						|
      p->apCsr = (Cursor**)&p->azVar[nVar];
 | 
						|
      p->nCursor = nCursor;
 | 
						|
      for(n=0; n<nVar; n++){
 | 
						|
        p->aVar[n].flags = MEM_Null;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for(n=0; n<p->nMem; n++){
 | 
						|
    p->aMem[n].flags = MEM_Null;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef SQLITE_DEBUG
 | 
						|
  if( (p->db->flags & SQLITE_VdbeListing)!=0
 | 
						|
    || sqlite3OsFileExists("vdbe_explain")
 | 
						|
  ){
 | 
						|
    int i;
 | 
						|
    printf("VDBE Program Listing:\n");
 | 
						|
    sqlite3VdbePrintSql(p);
 | 
						|
    for(i=0; i<p->nOp; i++){
 | 
						|
      sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( sqlite3OsFileExists("vdbe_trace") ){
 | 
						|
    p->trace = stdout;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  p->pTos = &p->aStack[-1];
 | 
						|
  p->pc = -1;
 | 
						|
  p->rc = SQLITE_OK;
 | 
						|
  p->uniqueCnt = 0;
 | 
						|
  p->returnDepth = 0;
 | 
						|
  p->errorAction = OE_Abort;
 | 
						|
  p->popStack =  0;
 | 
						|
  p->explain |= isExplain;
 | 
						|
  p->magic = VDBE_MAGIC_RUN;
 | 
						|
  p->nChange = 0;
 | 
						|
  p->cacheCtr = 1;
 | 
						|
  p->minWriteFileFormat = 255;
 | 
						|
#ifdef VDBE_PROFILE
 | 
						|
  {
 | 
						|
    int i;
 | 
						|
    for(i=0; i<p->nOp; i++){
 | 
						|
      p->aOp[i].cnt = 0;
 | 
						|
      p->aOp[i].cycles = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Close a cursor and release all the resources that cursor happens
 | 
						|
** to hold.
 | 
						|
*/
 | 
						|
void sqlite3VdbeFreeCursor(Cursor *pCx){
 | 
						|
  if( pCx==0 ){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if( pCx->pCursor ){
 | 
						|
    sqlite3BtreeCloseCursor(pCx->pCursor);
 | 
						|
  }
 | 
						|
  if( pCx->pBt ){
 | 
						|
    sqlite3BtreeClose(pCx->pBt);
 | 
						|
  }
 | 
						|
  sqliteFree(pCx->pData);
 | 
						|
  sqliteFree(pCx->aType);
 | 
						|
  sqliteFree(pCx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Close all cursors
 | 
						|
*/
 | 
						|
static void closeAllCursors(Vdbe *p){
 | 
						|
  int i;
 | 
						|
  if( p->apCsr==0 ) return;
 | 
						|
  for(i=0; i<p->nCursor; i++){
 | 
						|
    sqlite3VdbeFreeCursor(p->apCsr[i]);
 | 
						|
    p->apCsr[i] = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Clean up the VM after execution.
 | 
						|
**
 | 
						|
** This routine will automatically close any cursors, lists, and/or
 | 
						|
** sorters that were left open.  It also deletes the values of
 | 
						|
** variables in the aVar[] array.
 | 
						|
*/
 | 
						|
static void Cleanup(Vdbe *p){
 | 
						|
  int i;
 | 
						|
  if( p->aStack ){
 | 
						|
    releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
 | 
						|
    p->pTos = &p->aStack[-1];
 | 
						|
  }
 | 
						|
  closeAllCursors(p);
 | 
						|
  releaseMemArray(p->aMem, p->nMem);
 | 
						|
  sqlite3VdbeFifoClear(&p->sFifo);
 | 
						|
  if( p->contextStack ){
 | 
						|
    for(i=0; i<p->contextStackTop; i++){
 | 
						|
      sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
 | 
						|
    }
 | 
						|
    sqliteFree(p->contextStack);
 | 
						|
  }
 | 
						|
  p->contextStack = 0;
 | 
						|
  p->contextStackDepth = 0;
 | 
						|
  p->contextStackTop = 0;
 | 
						|
  sqliteFree(p->zErrMsg);
 | 
						|
  p->zErrMsg = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Set the number of result columns that will be returned by this SQL
 | 
						|
** statement. This is now set at compile time, rather than during
 | 
						|
** execution of the vdbe program so that sqlite3_column_count() can
 | 
						|
** be called on an SQL statement before sqlite3_step().
 | 
						|
*/
 | 
						|
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
 | 
						|
  Mem *pColName;
 | 
						|
  int n;
 | 
						|
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | 
						|
  sqliteFree(p->aColName);
 | 
						|
  n = nResColumn*COLNAME_N;
 | 
						|
  p->nResColumn = nResColumn;
 | 
						|
  p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n );
 | 
						|
  if( p->aColName==0 ) return;
 | 
						|
  while( n-- > 0 ){
 | 
						|
    (pColName++)->flags = MEM_Null;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Set the name of the idx'th column to be returned by the SQL statement.
 | 
						|
** zName must be a pointer to a nul terminated string.
 | 
						|
**
 | 
						|
** This call must be made after a call to sqlite3VdbeSetNumCols().
 | 
						|
**
 | 
						|
** If N==P3_STATIC  it means that zName is a pointer to a constant static
 | 
						|
** string and we can just copy the pointer. If it is P3_DYNAMIC, then 
 | 
						|
** the string is freed using sqliteFree() when the vdbe is finished with
 | 
						|
** it. Otherwise, N bytes of zName are copied.
 | 
						|
*/
 | 
						|
int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
 | 
						|
  int rc;
 | 
						|
  Mem *pColName;
 | 
						|
  assert( idx<p->nResColumn );
 | 
						|
  assert( var<COLNAME_N );
 | 
						|
  if( sqlite3MallocFailed() ) return SQLITE_NOMEM;
 | 
						|
  assert( p->aColName!=0 );
 | 
						|
  pColName = &(p->aColName[idx+var*p->nResColumn]);
 | 
						|
  if( N==P3_DYNAMIC || N==P3_STATIC ){
 | 
						|
    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
 | 
						|
  }else{
 | 
						|
    rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
 | 
						|
  }
 | 
						|
  if( rc==SQLITE_OK && N==P3_DYNAMIC ){
 | 
						|
    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
 | 
						|
    pColName->xDel = 0;
 | 
						|
  }
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** A read or write transaction may or may not be active on database handle
 | 
						|
** db. If a transaction is active, commit it. If there is a
 | 
						|
** write-transaction spanning more than one database file, this routine
 | 
						|
** takes care of the master journal trickery.
 | 
						|
*/
 | 
						|
static int vdbeCommit(sqlite3 *db){
 | 
						|
  int i;
 | 
						|
  int nTrans = 0;  /* Number of databases with an active write-transaction */
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
  int needXcommit = 0;
 | 
						|
 | 
						|
  for(i=0; i<db->nDb; i++){ 
 | 
						|
    Btree *pBt = db->aDb[i].pBt;
 | 
						|
    if( pBt && sqlite3BtreeIsInTrans(pBt) ){
 | 
						|
      needXcommit = 1;
 | 
						|
      if( i!=1 ) nTrans++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If there are any write-transactions at all, invoke the commit hook */
 | 
						|
  if( needXcommit && db->xCommitCallback ){
 | 
						|
    sqlite3SafetyOff(db);
 | 
						|
    rc = db->xCommitCallback(db->pCommitArg);
 | 
						|
    sqlite3SafetyOn(db);
 | 
						|
    if( rc ){
 | 
						|
      return SQLITE_CONSTRAINT;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* The simple case - no more than one database file (not counting the
 | 
						|
  ** TEMP database) has a transaction active.   There is no need for the
 | 
						|
  ** master-journal.
 | 
						|
  **
 | 
						|
  ** If the return value of sqlite3BtreeGetFilename() is a zero length
 | 
						|
  ** string, it means the main database is :memory:.  In that case we do
 | 
						|
  ** not support atomic multi-file commits, so use the simple case then
 | 
						|
  ** too.
 | 
						|
  */
 | 
						|
  if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
 | 
						|
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | 
						|
      Btree *pBt = db->aDb[i].pBt;
 | 
						|
      if( pBt ){
 | 
						|
        rc = sqlite3BtreeSync(pBt, 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Do the commit only if all databases successfully synced */
 | 
						|
    if( rc==SQLITE_OK ){
 | 
						|
      for(i=0; i<db->nDb; i++){
 | 
						|
        Btree *pBt = db->aDb[i].pBt;
 | 
						|
        if( pBt ){
 | 
						|
          sqlite3BtreeCommit(pBt);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* The complex case - There is a multi-file write-transaction active.
 | 
						|
  ** This requires a master journal file to ensure the transaction is
 | 
						|
  ** committed atomicly.
 | 
						|
  */
 | 
						|
#ifndef SQLITE_OMIT_DISKIO
 | 
						|
  else{
 | 
						|
    int needSync = 0;
 | 
						|
    char *zMaster = 0;   /* File-name for the master journal */
 | 
						|
    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
 | 
						|
    OsFile *master = 0;
 | 
						|
 | 
						|
    /* Select a master journal file name */
 | 
						|
    do {
 | 
						|
      u32 random;
 | 
						|
      sqliteFree(zMaster);
 | 
						|
      sqlite3Randomness(sizeof(random), &random);
 | 
						|
      zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff);
 | 
						|
      if( !zMaster ){
 | 
						|
        return SQLITE_NOMEM;
 | 
						|
      }
 | 
						|
    }while( sqlite3OsFileExists(zMaster) );
 | 
						|
 | 
						|
    /* Open the master journal. */
 | 
						|
    rc = sqlite3OsOpenExclusive(zMaster, &master, 0);
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      sqliteFree(zMaster);
 | 
						|
      return rc;
 | 
						|
    }
 | 
						|
 
 | 
						|
    /* Write the name of each database file in the transaction into the new
 | 
						|
    ** master journal file. If an error occurs at this point close
 | 
						|
    ** and delete the master journal file. All the individual journal files
 | 
						|
    ** still have 'null' as the master journal pointer, so they will roll
 | 
						|
    ** back independently if a failure occurs.
 | 
						|
    */
 | 
						|
    for(i=0; i<db->nDb; i++){ 
 | 
						|
      Btree *pBt = db->aDb[i].pBt;
 | 
						|
      if( i==1 ) continue;   /* Ignore the TEMP database */
 | 
						|
      if( pBt && sqlite3BtreeIsInTrans(pBt) ){
 | 
						|
        char const *zFile = sqlite3BtreeGetJournalname(pBt);
 | 
						|
        if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
 | 
						|
        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
 | 
						|
          needSync = 1;
 | 
						|
        }
 | 
						|
        rc = sqlite3OsWrite(master, zFile, strlen(zFile)+1);
 | 
						|
        if( rc!=SQLITE_OK ){
 | 
						|
          sqlite3OsClose(&master);
 | 
						|
          sqlite3OsDelete(zMaster);
 | 
						|
          sqliteFree(zMaster);
 | 
						|
          return rc;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /* Sync the master journal file. Before doing this, open the directory
 | 
						|
    ** the master journal file is store in so that it gets synced too.
 | 
						|
    */
 | 
						|
    zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
 | 
						|
    rc = sqlite3OsOpenDirectory(master, zMainFile);
 | 
						|
    if( rc!=SQLITE_OK ||
 | 
						|
          (needSync && (rc=sqlite3OsSync(master,0))!=SQLITE_OK) ){
 | 
						|
      sqlite3OsClose(&master);
 | 
						|
      sqlite3OsDelete(zMaster);
 | 
						|
      sqliteFree(zMaster);
 | 
						|
      return rc;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Sync all the db files involved in the transaction. The same call
 | 
						|
    ** sets the master journal pointer in each individual journal. If
 | 
						|
    ** an error occurs here, do not delete the master journal file.
 | 
						|
    **
 | 
						|
    ** If the error occurs during the first call to sqlite3BtreeSync(),
 | 
						|
    ** then there is a chance that the master journal file will be
 | 
						|
    ** orphaned. But we cannot delete it, in case the master journal
 | 
						|
    ** file name was written into the journal file before the failure
 | 
						|
    ** occured.
 | 
						|
    */
 | 
						|
    for(i=0; i<db->nDb; i++){ 
 | 
						|
      Btree *pBt = db->aDb[i].pBt;
 | 
						|
      if( pBt && sqlite3BtreeIsInTrans(pBt) ){
 | 
						|
        rc = sqlite3BtreeSync(pBt, zMaster);
 | 
						|
        if( rc!=SQLITE_OK ){
 | 
						|
          sqlite3OsClose(&master);
 | 
						|
          sqliteFree(zMaster);
 | 
						|
          return rc;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    sqlite3OsClose(&master);
 | 
						|
 | 
						|
    /* Delete the master journal file. This commits the transaction. After
 | 
						|
    ** doing this the directory is synced again before any individual
 | 
						|
    ** transaction files are deleted.
 | 
						|
    */
 | 
						|
    rc = sqlite3OsDelete(zMaster);
 | 
						|
    assert( rc==SQLITE_OK );
 | 
						|
    sqliteFree(zMaster);
 | 
						|
    zMaster = 0;
 | 
						|
    rc = sqlite3OsSyncDirectory(zMainFile);
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      /* This is not good. The master journal file has been deleted, but
 | 
						|
      ** the directory sync failed. There is no completely safe course of
 | 
						|
      ** action from here. The individual journals contain the name of the
 | 
						|
      ** master journal file, but there is no way of knowing if that
 | 
						|
      ** master journal exists now or if it will exist after the operating
 | 
						|
      ** system crash that may follow the fsync() failure.
 | 
						|
      */
 | 
						|
      return rc;
 | 
						|
    }
 | 
						|
 | 
						|
    /* All files and directories have already been synced, so the following
 | 
						|
    ** calls to sqlite3BtreeCommit() are only closing files and deleting
 | 
						|
    ** journals. If something goes wrong while this is happening we don't
 | 
						|
    ** really care. The integrity of the transaction is already guaranteed,
 | 
						|
    ** but some stray 'cold' journals may be lying around. Returning an
 | 
						|
    ** error code won't help matters.
 | 
						|
    */
 | 
						|
    for(i=0; i<db->nDb; i++){ 
 | 
						|
      Btree *pBt = db->aDb[i].pBt;
 | 
						|
      if( pBt ){
 | 
						|
        sqlite3BtreeCommit(pBt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Find every active VM other than pVdbe and change its status to
 | 
						|
** aborted.  This happens when one VM causes a rollback due to an
 | 
						|
** ON CONFLICT ROLLBACK clause (for example).  The other VMs must be
 | 
						|
** aborted so that they do not have data rolled out from underneath
 | 
						|
** them leading to a segfault.
 | 
						|
*/
 | 
						|
void sqlite3AbortOtherActiveVdbes(sqlite3 *db, Vdbe *pExcept){
 | 
						|
  Vdbe *pOther;
 | 
						|
  for(pOther=db->pVdbe; pOther; pOther=pOther->pNext){
 | 
						|
    if( pOther==pExcept ) continue;
 | 
						|
    if( pOther->magic!=VDBE_MAGIC_RUN || pOther->pc<0 ) continue;
 | 
						|
    closeAllCursors(pOther);
 | 
						|
    pOther->aborted = 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
** This routine checks that the sqlite3.activeVdbeCnt count variable
 | 
						|
** matches the number of vdbe's in the list sqlite3.pVdbe that are
 | 
						|
** currently active. An assertion fails if the two counts do not match.
 | 
						|
** This is an internal self-check only - it is not an essential processing
 | 
						|
** step.
 | 
						|
**
 | 
						|
** This is a no-op if NDEBUG is defined.
 | 
						|
*/
 | 
						|
#ifndef NDEBUG
 | 
						|
static void checkActiveVdbeCnt(sqlite3 *db){
 | 
						|
  Vdbe *p;
 | 
						|
  int cnt = 0;
 | 
						|
  p = db->pVdbe;
 | 
						|
  while( p ){
 | 
						|
    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
 | 
						|
      cnt++;
 | 
						|
    }
 | 
						|
    p = p->pNext;
 | 
						|
  }
 | 
						|
  assert( cnt==db->activeVdbeCnt );
 | 
						|
}
 | 
						|
#else
 | 
						|
#define checkActiveVdbeCnt(x)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called the when a VDBE tries to halt.  If the VDBE
 | 
						|
** has made changes and is in autocommit mode, then commit those
 | 
						|
** changes.  If a rollback is needed, then do the rollback.
 | 
						|
**
 | 
						|
** This routine is the only way to move the state of a VM from
 | 
						|
** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.
 | 
						|
**
 | 
						|
** Return an error code.  If the commit could not complete because of
 | 
						|
** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
 | 
						|
** means the close did not happen and needs to be repeated.
 | 
						|
*/
 | 
						|
int sqlite3VdbeHalt(Vdbe *p){
 | 
						|
  sqlite3 *db = p->db;
 | 
						|
  int i;
 | 
						|
  int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
 | 
						|
  int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
 | 
						|
 | 
						|
  /* This function contains the logic that determines if a statement or
 | 
						|
  ** transaction will be committed or rolled back as a result of the
 | 
						|
  ** execution of this virtual machine. 
 | 
						|
  **
 | 
						|
  ** Special errors:
 | 
						|
  **
 | 
						|
  **     If an SQLITE_NOMEM error has occured in a statement that writes to
 | 
						|
  **     the database, then either a statement or transaction must be rolled
 | 
						|
  **     back to ensure the tree-structures are in a consistent state. A
 | 
						|
  **     statement transaction is rolled back if one is open, otherwise the
 | 
						|
  **     entire transaction must be rolled back.
 | 
						|
  **
 | 
						|
  **     If an SQLITE_IOERR error has occured in a statement that writes to
 | 
						|
  **     the database, then the entire transaction must be rolled back. The
 | 
						|
  **     I/O error may have caused garbage to be written to the journal 
 | 
						|
  **     file. Were the transaction to continue and eventually be rolled 
 | 
						|
  **     back that garbage might end up in the database file.
 | 
						|
  **     
 | 
						|
  **     In both of the above cases, the Vdbe.errorAction variable is 
 | 
						|
  **     ignored. If the sqlite3.autoCommit flag is false and a transaction
 | 
						|
  **     is rolled back, it will be set to true.
 | 
						|
  **
 | 
						|
  ** Other errors:
 | 
						|
  **
 | 
						|
  ** No error:
 | 
						|
  **
 | 
						|
  */
 | 
						|
 | 
						|
  if( sqlite3MallocFailed() ){
 | 
						|
    p->rc = SQLITE_NOMEM;
 | 
						|
  }
 | 
						|
  if( p->magic!=VDBE_MAGIC_RUN ){
 | 
						|
    /* Already halted.  Nothing to do. */
 | 
						|
    assert( p->magic==VDBE_MAGIC_HALT );
 | 
						|
    return SQLITE_OK;
 | 
						|
  }
 | 
						|
  closeAllCursors(p);
 | 
						|
  checkActiveVdbeCnt(db);
 | 
						|
 | 
						|
  /* No commit or rollback needed if the program never started */
 | 
						|
  if( p->pc>=0 ){
 | 
						|
 | 
						|
    /* Check for one of the special errors - SQLITE_NOMEM or SQLITE_IOERR */
 | 
						|
    isSpecialError = ((p->rc==SQLITE_NOMEM || p->rc==SQLITE_IOERR)?1:0);
 | 
						|
    if( isSpecialError ){
 | 
						|
      /* This loop does static analysis of the query to see which of the
 | 
						|
      ** following three categories it falls into:
 | 
						|
      **
 | 
						|
      **     Read-only
 | 
						|
      **     Query with statement journal
 | 
						|
      **     Query without statement journal
 | 
						|
      **
 | 
						|
      ** We could do something more elegant than this static analysis (i.e.
 | 
						|
      ** store the type of query as part of the compliation phase), but 
 | 
						|
      ** handling malloc() or IO failure is a fairly obscure edge case so 
 | 
						|
      ** this is probably easier. Todo: Might be an opportunity to reduce 
 | 
						|
      ** code size a very small amount though...
 | 
						|
      */
 | 
						|
      int isReadOnly = 1;
 | 
						|
      int isStatement = 0;
 | 
						|
      assert(p->aOp || p->nOp==0);
 | 
						|
      for(i=0; i<p->nOp; i++){ 
 | 
						|
        switch( p->aOp[i].opcode ){
 | 
						|
          case OP_Transaction:
 | 
						|
            isReadOnly = 0;
 | 
						|
            break;
 | 
						|
          case OP_Statement:
 | 
						|
            isStatement = 1;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  
 | 
						|
      /* If the query was read-only, we need do no rollback at all. Otherwise,
 | 
						|
      ** proceed with the special handling.
 | 
						|
      */
 | 
						|
      if( !isReadOnly ){
 | 
						|
        if( p->rc==SQLITE_NOMEM && isStatement ){
 | 
						|
          xFunc = sqlite3BtreeRollbackStmt;
 | 
						|
        }else{
 | 
						|
          /* We are forced to roll back the active transaction. Before doing
 | 
						|
          ** so, abort any other statements this handle currently has active.
 | 
						|
          */
 | 
						|
          sqlite3AbortOtherActiveVdbes(db, p);
 | 
						|
          sqlite3RollbackAll(db);
 | 
						|
          db->autoCommit = 1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
    /* If the auto-commit flag is set and this is the only active vdbe, then
 | 
						|
    ** we do either a commit or rollback of the current transaction. 
 | 
						|
    **
 | 
						|
    ** Note: This block also runs if one of the special errors handled 
 | 
						|
    ** above has occured. 
 | 
						|
    */
 | 
						|
    if( db->autoCommit && db->activeVdbeCnt==1 ){
 | 
						|
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
 | 
						|
	/* The auto-commit flag is true, and the vdbe program was 
 | 
						|
        ** successful or hit an 'OR FAIL' constraint. This means a commit 
 | 
						|
        ** is required.
 | 
						|
        */
 | 
						|
        int rc = vdbeCommit(db);
 | 
						|
        if( rc==SQLITE_BUSY ){
 | 
						|
          return SQLITE_BUSY;
 | 
						|
        }else if( rc!=SQLITE_OK ){
 | 
						|
          p->rc = rc;
 | 
						|
          sqlite3RollbackAll(db);
 | 
						|
        }else{
 | 
						|
          sqlite3CommitInternalChanges(db);
 | 
						|
        }
 | 
						|
      }else{
 | 
						|
        sqlite3RollbackAll(db);
 | 
						|
      }
 | 
						|
    }else if( !xFunc ){
 | 
						|
      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
 | 
						|
        xFunc = sqlite3BtreeCommitStmt;
 | 
						|
      }else if( p->errorAction==OE_Abort ){
 | 
						|
        xFunc = sqlite3BtreeRollbackStmt;
 | 
						|
      }else{
 | 
						|
        sqlite3AbortOtherActiveVdbes(db, p);
 | 
						|
        sqlite3RollbackAll(db);
 | 
						|
        db->autoCommit = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
    /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
 | 
						|
    ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
 | 
						|
    ** and the return code is still SQLITE_OK, set the return code to the new
 | 
						|
    ** error value.
 | 
						|
    */
 | 
						|
    assert(!xFunc ||
 | 
						|
      xFunc==sqlite3BtreeCommitStmt ||
 | 
						|
      xFunc==sqlite3BtreeRollbackStmt
 | 
						|
    );
 | 
						|
    for(i=0; xFunc && i<db->nDb; i++){ 
 | 
						|
      int rc;
 | 
						|
      Btree *pBt = db->aDb[i].pBt;
 | 
						|
      if( pBt ){
 | 
						|
        rc = xFunc(pBt);
 | 
						|
        if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
 | 
						|
          p->rc = rc;
 | 
						|
          sqlite3SetString(&p->zErrMsg, 0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
    /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
 | 
						|
    ** set the change counter. 
 | 
						|
    */
 | 
						|
    if( p->changeCntOn && p->pc>=0 ){
 | 
						|
      if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
 | 
						|
        sqlite3VdbeSetChanges(db, p->nChange);
 | 
						|
      }else{
 | 
						|
        sqlite3VdbeSetChanges(db, 0);
 | 
						|
      }
 | 
						|
      p->nChange = 0;
 | 
						|
    }
 | 
						|
  
 | 
						|
    /* Rollback or commit any schema changes that occurred. */
 | 
						|
    if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
 | 
						|
      sqlite3ResetInternalSchema(db, 0);
 | 
						|
      db->flags = (db->flags | SQLITE_InternChanges);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* We have successfully halted and closed the VM.  Record this fact. */
 | 
						|
  if( p->pc>=0 ){
 | 
						|
    db->activeVdbeCnt--;
 | 
						|
  }
 | 
						|
  p->magic = VDBE_MAGIC_HALT;
 | 
						|
  checkActiveVdbeCnt(db);
 | 
						|
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Clean up a VDBE after execution but do not delete the VDBE just yet.
 | 
						|
** Write any error messages into *pzErrMsg.  Return the result code.
 | 
						|
**
 | 
						|
** After this routine is run, the VDBE should be ready to be executed
 | 
						|
** again.
 | 
						|
**
 | 
						|
** To look at it another way, this routine resets the state of the
 | 
						|
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
 | 
						|
** VDBE_MAGIC_INIT.
 | 
						|
*/
 | 
						|
int sqlite3VdbeReset(Vdbe *p){
 | 
						|
  if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
 | 
						|
    sqlite3Error(p->db, SQLITE_MISUSE, 0);
 | 
						|
    return SQLITE_MISUSE;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the VM did not run to completion or if it encountered an
 | 
						|
  ** error, then it might not have been halted properly.  So halt
 | 
						|
  ** it now.
 | 
						|
  */
 | 
						|
  sqlite3VdbeHalt(p);
 | 
						|
 | 
						|
  /* If the VDBE has be run even partially, then transfer the error code
 | 
						|
  ** and error message from the VDBE into the main database structure.  But
 | 
						|
  ** if the VDBE has just been set to run but has not actually executed any
 | 
						|
  ** instructions yet, leave the main database error information unchanged.
 | 
						|
  */
 | 
						|
  if( p->pc>=0 ){
 | 
						|
    if( p->zErrMsg ){
 | 
						|
      sqlite3* db = p->db;
 | 
						|
      sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3FreeX);
 | 
						|
      db->errCode = p->rc;
 | 
						|
      p->zErrMsg = 0;
 | 
						|
    }else if( p->rc ){
 | 
						|
      sqlite3Error(p->db, p->rc, 0);
 | 
						|
    }else{
 | 
						|
      sqlite3Error(p->db, SQLITE_OK, 0);
 | 
						|
    }
 | 
						|
  }else if( p->rc && p->expired ){
 | 
						|
    /* The expired flag was set on the VDBE before the first call
 | 
						|
    ** to sqlite3_step(). For consistency (since sqlite3_step() was
 | 
						|
    ** called), set the database error in this case as well.
 | 
						|
    */
 | 
						|
    sqlite3Error(p->db, p->rc, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Reclaim all memory used by the VDBE
 | 
						|
  */
 | 
						|
  Cleanup(p);
 | 
						|
 | 
						|
  /* Save profiling information from this VDBE run.
 | 
						|
  */
 | 
						|
  assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack );
 | 
						|
#ifdef VDBE_PROFILE
 | 
						|
  {
 | 
						|
    FILE *out = fopen("vdbe_profile.out", "a");
 | 
						|
    if( out ){
 | 
						|
      int i;
 | 
						|
      fprintf(out, "---- ");
 | 
						|
      for(i=0; i<p->nOp; i++){
 | 
						|
        fprintf(out, "%02x", p->aOp[i].opcode);
 | 
						|
      }
 | 
						|
      fprintf(out, "\n");
 | 
						|
      for(i=0; i<p->nOp; i++){
 | 
						|
        fprintf(out, "%6d %10lld %8lld ",
 | 
						|
           p->aOp[i].cnt,
 | 
						|
           p->aOp[i].cycles,
 | 
						|
           p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
 | 
						|
        );
 | 
						|
        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
 | 
						|
      }
 | 
						|
      fclose(out);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  p->magic = VDBE_MAGIC_INIT;
 | 
						|
  p->aborted = 0;
 | 
						|
  if( p->rc==SQLITE_SCHEMA ){
 | 
						|
    sqlite3ResetInternalSchema(p->db, 0);
 | 
						|
  }
 | 
						|
  return p->rc;
 | 
						|
}
 | 
						|
 
 | 
						|
/*
 | 
						|
** Clean up and delete a VDBE after execution.  Return an integer which is
 | 
						|
** the result code.  Write any error message text into *pzErrMsg.
 | 
						|
*/
 | 
						|
int sqlite3VdbeFinalize(Vdbe *p){
 | 
						|
  int rc = SQLITE_OK;
 | 
						|
 | 
						|
  if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
 | 
						|
    rc = sqlite3VdbeReset(p);
 | 
						|
  }else if( p->magic!=VDBE_MAGIC_INIT ){
 | 
						|
    return SQLITE_MISUSE;
 | 
						|
  }
 | 
						|
  sqlite3VdbeDelete(p);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Call the destructor for each auxdata entry in pVdbeFunc for which
 | 
						|
** the corresponding bit in mask is clear.  Auxdata entries beyond 31
 | 
						|
** are always destroyed.  To destroy all auxdata entries, call this
 | 
						|
** routine with mask==0.
 | 
						|
*/
 | 
						|
void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
 | 
						|
  int i;
 | 
						|
  for(i=0; i<pVdbeFunc->nAux; i++){
 | 
						|
    struct AuxData *pAux = &pVdbeFunc->apAux[i];
 | 
						|
    if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
 | 
						|
      if( pAux->xDelete ){
 | 
						|
        pAux->xDelete(pAux->pAux);
 | 
						|
      }
 | 
						|
      pAux->pAux = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete an entire VDBE.
 | 
						|
*/
 | 
						|
void sqlite3VdbeDelete(Vdbe *p){
 | 
						|
  int i;
 | 
						|
  if( p==0 ) return;
 | 
						|
  Cleanup(p);
 | 
						|
  if( p->pPrev ){
 | 
						|
    p->pPrev->pNext = p->pNext;
 | 
						|
  }else{
 | 
						|
    assert( p->db->pVdbe==p );
 | 
						|
    p->db->pVdbe = p->pNext;
 | 
						|
  }
 | 
						|
  if( p->pNext ){
 | 
						|
    p->pNext->pPrev = p->pPrev;
 | 
						|
  }
 | 
						|
  if( p->aOp ){
 | 
						|
    for(i=0; i<p->nOp; i++){
 | 
						|
      Op *pOp = &p->aOp[i];
 | 
						|
      freeP3(pOp->p3type, pOp->p3);
 | 
						|
    }
 | 
						|
    sqliteFree(p->aOp);
 | 
						|
  }
 | 
						|
  releaseMemArray(p->aVar, p->nVar);
 | 
						|
  sqliteFree(p->aLabel);
 | 
						|
  sqliteFree(p->aStack);
 | 
						|
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | 
						|
  sqliteFree(p->aColName);
 | 
						|
  p->magic = VDBE_MAGIC_DEAD;
 | 
						|
  sqliteFree(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** If a MoveTo operation is pending on the given cursor, then do that
 | 
						|
** MoveTo now.  Return an error code.  If no MoveTo is pending, this
 | 
						|
** routine does nothing and returns SQLITE_OK.
 | 
						|
*/
 | 
						|
int sqlite3VdbeCursorMoveto(Cursor *p){
 | 
						|
  if( p->deferredMoveto ){
 | 
						|
    int res, rc;
 | 
						|
    extern int sqlite3_search_count;
 | 
						|
    assert( p->isTable );
 | 
						|
    if( p->isTable ){
 | 
						|
      rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, &res);
 | 
						|
    }else{
 | 
						|
      rc = sqlite3BtreeMoveto(p->pCursor,(char*)&p->movetoTarget,
 | 
						|
                              sizeof(i64),&res);
 | 
						|
    }
 | 
						|
    if( rc ) return rc;
 | 
						|
    *p->pIncrKey = 0;
 | 
						|
    p->lastRowid = keyToInt(p->movetoTarget);
 | 
						|
    p->rowidIsValid = res==0;
 | 
						|
    if( res<0 ){
 | 
						|
      rc = sqlite3BtreeNext(p->pCursor, &res);
 | 
						|
      if( rc ) return rc;
 | 
						|
    }
 | 
						|
    sqlite3_search_count++;
 | 
						|
    p->deferredMoveto = 0;
 | 
						|
    p->cacheStatus = CACHE_STALE;
 | 
						|
  }
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The following functions:
 | 
						|
**
 | 
						|
** sqlite3VdbeSerialType()
 | 
						|
** sqlite3VdbeSerialTypeLen()
 | 
						|
** sqlite3VdbeSerialRead()
 | 
						|
** sqlite3VdbeSerialLen()
 | 
						|
** sqlite3VdbeSerialWrite()
 | 
						|
**
 | 
						|
** encapsulate the code that serializes values for storage in SQLite
 | 
						|
** data and index records. Each serialized value consists of a
 | 
						|
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
 | 
						|
** integer, stored as a varint.
 | 
						|
**
 | 
						|
** In an SQLite index record, the serial type is stored directly before
 | 
						|
** the blob of data that it corresponds to. In a table record, all serial
 | 
						|
** types are stored at the start of the record, and the blobs of data at
 | 
						|
** the end. Hence these functions allow the caller to handle the
 | 
						|
** serial-type and data blob seperately.
 | 
						|
**
 | 
						|
** The following table describes the various storage classes for data:
 | 
						|
**
 | 
						|
**   serial type        bytes of data      type
 | 
						|
**   --------------     ---------------    ---------------
 | 
						|
**      0                     0            NULL
 | 
						|
**      1                     1            signed integer
 | 
						|
**      2                     2            signed integer
 | 
						|
**      3                     3            signed integer
 | 
						|
**      4                     4            signed integer
 | 
						|
**      5                     6            signed integer
 | 
						|
**      6                     8            signed integer
 | 
						|
**      7                     8            IEEE float
 | 
						|
**      8                     0            Integer constant 0
 | 
						|
**      9                     0            Integer constant 1
 | 
						|
**     10,11                               reserved for expansion
 | 
						|
**    N>=12 and even       (N-12)/2        BLOB
 | 
						|
**    N>=13 and odd        (N-13)/2        text
 | 
						|
**
 | 
						|
** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
 | 
						|
** of SQLite will not understand those serial types.
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
** Return the serial-type for the value stored in pMem.
 | 
						|
*/
 | 
						|
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
 | 
						|
  int flags = pMem->flags;
 | 
						|
 | 
						|
  if( flags&MEM_Null ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  if( flags&MEM_Int ){
 | 
						|
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
 | 
						|
#   define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
 | 
						|
    i64 i = pMem->i;
 | 
						|
    u64 u;
 | 
						|
    if( file_format>=4 && (i&1)==i ){
 | 
						|
      return 8+i;
 | 
						|
    }
 | 
						|
    u = i<0 ? -i : i;
 | 
						|
    if( u<=127 ) return 1;
 | 
						|
    if( u<=32767 ) return 2;
 | 
						|
    if( u<=8388607 ) return 3;
 | 
						|
    if( u<=2147483647 ) return 4;
 | 
						|
    if( u<=MAX_6BYTE ) return 5;
 | 
						|
    return 6;
 | 
						|
  }
 | 
						|
  if( flags&MEM_Real ){
 | 
						|
    return 7;
 | 
						|
  }
 | 
						|
  if( flags&MEM_Str ){
 | 
						|
    int n = pMem->n;
 | 
						|
    assert( n>=0 );
 | 
						|
    return ((n*2) + 13);
 | 
						|
  }
 | 
						|
  if( flags&MEM_Blob ){
 | 
						|
    return (pMem->n*2 + 12);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the length of the data corresponding to the supplied serial-type.
 | 
						|
*/
 | 
						|
int sqlite3VdbeSerialTypeLen(u32 serial_type){
 | 
						|
  if( serial_type>=12 ){
 | 
						|
    return (serial_type-12)/2;
 | 
						|
  }else{
 | 
						|
    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
 | 
						|
    return aSize[serial_type];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Write the serialized data blob for the value stored in pMem into 
 | 
						|
** buf. It is assumed that the caller has allocated sufficient space.
 | 
						|
** Return the number of bytes written.
 | 
						|
*/ 
 | 
						|
int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem, int file_format){
 | 
						|
  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
 | 
						|
  int len;
 | 
						|
 | 
						|
  /* Integer and Real */
 | 
						|
  if( serial_type<=7 && serial_type>0 ){
 | 
						|
    u64 v;
 | 
						|
    int i;
 | 
						|
    if( serial_type==7 ){
 | 
						|
      v = *(u64*)&pMem->r;
 | 
						|
    }else{
 | 
						|
      v = *(u64*)&pMem->i;
 | 
						|
    }
 | 
						|
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
 | 
						|
    while( i-- ){
 | 
						|
      buf[i] = (v&0xFF);
 | 
						|
      v >>= 8;
 | 
						|
    }
 | 
						|
    return len;
 | 
						|
  }
 | 
						|
 | 
						|
  /* String or blob */
 | 
						|
  if( serial_type>=12 ){
 | 
						|
    len = sqlite3VdbeSerialTypeLen(serial_type);
 | 
						|
    memcpy(buf, pMem->z, len);
 | 
						|
    return len;
 | 
						|
  }
 | 
						|
 | 
						|
  /* NULL or constants 0 or 1 */
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Deserialize the data blob pointed to by buf as serial type serial_type
 | 
						|
** and store the result in pMem.  Return the number of bytes read.
 | 
						|
*/ 
 | 
						|
int sqlite3VdbeSerialGet(
 | 
						|
  const unsigned char *buf,     /* Buffer to deserialize from */
 | 
						|
  u32 serial_type,              /* Serial type to deserialize */
 | 
						|
  Mem *pMem                     /* Memory cell to write value into */
 | 
						|
){
 | 
						|
  switch( serial_type ){
 | 
						|
    case 10:   /* Reserved for future use */
 | 
						|
    case 11:   /* Reserved for future use */
 | 
						|
    case 0: {  /* NULL */
 | 
						|
      pMem->flags = MEM_Null;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case 1: { /* 1-byte signed integer */
 | 
						|
      pMem->i = (signed char)buf[0];
 | 
						|
      pMem->flags = MEM_Int;
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
    case 2: { /* 2-byte signed integer */
 | 
						|
      pMem->i = (((signed char)buf[0])<<8) | buf[1];
 | 
						|
      pMem->flags = MEM_Int;
 | 
						|
      return 2;
 | 
						|
    }
 | 
						|
    case 3: { /* 3-byte signed integer */
 | 
						|
      pMem->i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
 | 
						|
      pMem->flags = MEM_Int;
 | 
						|
      return 3;
 | 
						|
    }
 | 
						|
    case 4: { /* 4-byte signed integer */
 | 
						|
      pMem->i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | 
						|
      pMem->flags = MEM_Int;
 | 
						|
      return 4;
 | 
						|
    }
 | 
						|
    case 5: { /* 6-byte signed integer */
 | 
						|
      u64 x = (((signed char)buf[0])<<8) | buf[1];
 | 
						|
      u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
 | 
						|
      x = (x<<32) | y;
 | 
						|
      pMem->i = *(i64*)&x;
 | 
						|
      pMem->flags = MEM_Int;
 | 
						|
      return 6;
 | 
						|
    }
 | 
						|
    case 6:   /* 8-byte signed integer */
 | 
						|
    case 7: { /* IEEE floating point */
 | 
						|
      u64 x;
 | 
						|
      u32 y;
 | 
						|
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
 | 
						|
      /* Verify that integers and floating point values use the same
 | 
						|
      ** byte order.  The byte order differs on some (broken) architectures.
 | 
						|
      */
 | 
						|
      static const u64 t1 = ((u64)0x3ff00000)<<32;
 | 
						|
      assert( 1.0==*(double*)&t1 );
 | 
						|
#endif
 | 
						|
 | 
						|
      x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | 
						|
      y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
 | 
						|
      x = (x<<32) | y;
 | 
						|
      if( serial_type==6 ){
 | 
						|
        pMem->i = *(i64*)&x;
 | 
						|
        pMem->flags = MEM_Int;
 | 
						|
      }else{
 | 
						|
        pMem->r = *(double*)&x;
 | 
						|
        pMem->flags = MEM_Real;
 | 
						|
      }
 | 
						|
      return 8;
 | 
						|
    }
 | 
						|
    case 8:    /* Integer 0 */
 | 
						|
    case 9: {  /* Integer 1 */
 | 
						|
      pMem->i = serial_type-8;
 | 
						|
      pMem->flags = MEM_Int;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      int len = (serial_type-12)/2;
 | 
						|
      pMem->z = (char *)buf;
 | 
						|
      pMem->n = len;
 | 
						|
      pMem->xDel = 0;
 | 
						|
      if( serial_type&0x01 ){
 | 
						|
        pMem->flags = MEM_Str | MEM_Ephem;
 | 
						|
      }else{
 | 
						|
        pMem->flags = MEM_Blob | MEM_Ephem;
 | 
						|
      }
 | 
						|
      return len;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The header of a record consists of a sequence variable-length integers.
 | 
						|
** These integers are almost always small and are encoded as a single byte.
 | 
						|
** The following macro takes advantage this fact to provide a fast decode
 | 
						|
** of the integers in a record header.  It is faster for the common case
 | 
						|
** where the integer is a single byte.  It is a little slower when the
 | 
						|
** integer is two or more bytes.  But overall it is faster.
 | 
						|
**
 | 
						|
** The following expressions are equivalent:
 | 
						|
**
 | 
						|
**     x = sqlite3GetVarint32( A, &B );
 | 
						|
**
 | 
						|
**     x = GetVarint( A, B );
 | 
						|
**
 | 
						|
*/
 | 
						|
#define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
 | 
						|
 | 
						|
/*
 | 
						|
** This function compares the two table rows or index records specified by 
 | 
						|
** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
 | 
						|
** or positive integer if {nKey1, pKey1} is less than, equal to or 
 | 
						|
** greater than {nKey2, pKey2}.  Both Key1 and Key2 must be byte strings
 | 
						|
** composed by the OP_MakeRecord opcode of the VDBE.
 | 
						|
*/
 | 
						|
int sqlite3VdbeRecordCompare(
 | 
						|
  void *userData,
 | 
						|
  int nKey1, const void *pKey1, 
 | 
						|
  int nKey2, const void *pKey2
 | 
						|
){
 | 
						|
  KeyInfo *pKeyInfo = (KeyInfo*)userData;
 | 
						|
  u32 d1, d2;          /* Offset into aKey[] of next data element */
 | 
						|
  u32 idx1, idx2;      /* Offset into aKey[] of next header element */
 | 
						|
  u32 szHdr1, szHdr2;  /* Number of bytes in header */
 | 
						|
  int i = 0;
 | 
						|
  int nField;
 | 
						|
  int rc = 0;
 | 
						|
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | 
						|
  const unsigned char *aKey2 = (const unsigned char *)pKey2;
 | 
						|
 | 
						|
  Mem mem1;
 | 
						|
  Mem mem2;
 | 
						|
  mem1.enc = pKeyInfo->enc;
 | 
						|
  mem2.enc = pKeyInfo->enc;
 | 
						|
  
 | 
						|
  idx1 = GetVarint(aKey1, szHdr1);
 | 
						|
  d1 = szHdr1;
 | 
						|
  idx2 = GetVarint(aKey2, szHdr2);
 | 
						|
  d2 = szHdr2;
 | 
						|
  nField = pKeyInfo->nField;
 | 
						|
  while( idx1<szHdr1 && idx2<szHdr2 ){
 | 
						|
    u32 serial_type1;
 | 
						|
    u32 serial_type2;
 | 
						|
 | 
						|
    /* Read the serial types for the next element in each key. */
 | 
						|
    idx1 += GetVarint( aKey1+idx1, serial_type1 );
 | 
						|
    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
 | 
						|
    idx2 += GetVarint( aKey2+idx2, serial_type2 );
 | 
						|
    if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
 | 
						|
 | 
						|
    /* Assert that there is enough space left in each key for the blob of
 | 
						|
    ** data to go with the serial type just read. This assert may fail if
 | 
						|
    ** the file is corrupted.  Then read the value from each key into mem1
 | 
						|
    ** and mem2 respectively.
 | 
						|
    */
 | 
						|
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
 | 
						|
    d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
 | 
						|
 | 
						|
    rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
 | 
						|
    if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
 | 
						|
    if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
 | 
						|
    if( rc!=0 ){
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
 | 
						|
  /* One of the keys ran out of fields, but all the fields up to that point
 | 
						|
  ** were equal. If the incrKey flag is true, then the second key is
 | 
						|
  ** treated as larger.
 | 
						|
  */
 | 
						|
  if( rc==0 ){
 | 
						|
    if( pKeyInfo->incrKey ){
 | 
						|
      rc = -1;
 | 
						|
    }else if( d1<nKey1 ){
 | 
						|
      rc = 1;
 | 
						|
    }else if( d2<nKey2 ){
 | 
						|
      rc = -1;
 | 
						|
    }
 | 
						|
  }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
 | 
						|
               && pKeyInfo->aSortOrder[i] ){
 | 
						|
    rc = -rc;
 | 
						|
  }
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The argument is an index entry composed using the OP_MakeRecord opcode.
 | 
						|
** The last entry in this record should be an integer (specifically
 | 
						|
** an integer rowid).  This routine returns the number of bytes in
 | 
						|
** that integer.
 | 
						|
*/
 | 
						|
int sqlite3VdbeIdxRowidLen(const u8 *aKey){
 | 
						|
  u32 szHdr;        /* Size of the header */
 | 
						|
  u32 typeRowid;    /* Serial type of the rowid */
 | 
						|
 | 
						|
  sqlite3GetVarint32(aKey, &szHdr);
 | 
						|
  sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
 | 
						|
  return sqlite3VdbeSerialTypeLen(typeRowid);
 | 
						|
}
 | 
						|
  
 | 
						|
 | 
						|
/*
 | 
						|
** pCur points at an index entry created using the OP_MakeRecord opcode.
 | 
						|
** Read the rowid (the last field in the record) and store it in *rowid.
 | 
						|
** Return SQLITE_OK if everything works, or an error code otherwise.
 | 
						|
*/
 | 
						|
int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
 | 
						|
  i64 nCellKey;
 | 
						|
  int rc;
 | 
						|
  u32 szHdr;        /* Size of the header */
 | 
						|
  u32 typeRowid;    /* Serial type of the rowid */
 | 
						|
  u32 lenRowid;     /* Size of the rowid */
 | 
						|
  Mem m, v;
 | 
						|
 | 
						|
  sqlite3BtreeKeySize(pCur, &nCellKey);
 | 
						|
  if( nCellKey<=0 ){
 | 
						|
    return SQLITE_CORRUPT_BKPT;
 | 
						|
  }
 | 
						|
  rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
 | 
						|
  if( rc ){
 | 
						|
    return rc;
 | 
						|
  }
 | 
						|
  sqlite3GetVarint32((u8*)m.z, &szHdr);
 | 
						|
  sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
 | 
						|
  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
 | 
						|
  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
 | 
						|
  *rowid = v.i;
 | 
						|
  sqlite3VdbeMemRelease(&m);
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Compare the key of the index entry that cursor pC is point to against
 | 
						|
** the key string in pKey (of length nKey).  Write into *pRes a number
 | 
						|
** that is negative, zero, or positive if pC is less than, equal to,
 | 
						|
** or greater than pKey.  Return SQLITE_OK on success.
 | 
						|
**
 | 
						|
** pKey is either created without a rowid or is truncated so that it
 | 
						|
** omits the rowid at the end.  The rowid at the end of the index entry
 | 
						|
** is ignored as well.
 | 
						|
*/
 | 
						|
int sqlite3VdbeIdxKeyCompare(
 | 
						|
  Cursor *pC,                 /* The cursor to compare against */
 | 
						|
  int nKey, const u8 *pKey,   /* The key to compare */
 | 
						|
  int *res                    /* Write the comparison result here */
 | 
						|
){
 | 
						|
  i64 nCellKey;
 | 
						|
  int rc;
 | 
						|
  BtCursor *pCur = pC->pCursor;
 | 
						|
  int lenRowid;
 | 
						|
  Mem m;
 | 
						|
 | 
						|
  sqlite3BtreeKeySize(pCur, &nCellKey);
 | 
						|
  if( nCellKey<=0 ){
 | 
						|
    *res = 0;
 | 
						|
    return SQLITE_OK;
 | 
						|
  }
 | 
						|
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
 | 
						|
  if( rc ){
 | 
						|
    return rc;
 | 
						|
  }
 | 
						|
  lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
 | 
						|
  *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
 | 
						|
  sqlite3VdbeMemRelease(&m);
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine sets the value to be returned by subsequent calls to
 | 
						|
** sqlite3_changes() on the database handle 'db'. 
 | 
						|
*/
 | 
						|
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
 | 
						|
  db->nChange = nChange;
 | 
						|
  db->nTotalChange += nChange;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Set a flag in the vdbe to update the change counter when it is finalised
 | 
						|
** or reset.
 | 
						|
*/
 | 
						|
void sqlite3VdbeCountChanges(Vdbe *v){
 | 
						|
  v->changeCntOn = 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Mark every prepared statement associated with a database connection
 | 
						|
** as expired.
 | 
						|
**
 | 
						|
** An expired statement means that recompilation of the statement is
 | 
						|
** recommend.  Statements expire when things happen that make their
 | 
						|
** programs obsolete.  Removing user-defined functions or collating
 | 
						|
** sequences, or changing an authorization function are the types of
 | 
						|
** things that make prepared statements obsolete.
 | 
						|
*/
 | 
						|
void sqlite3ExpirePreparedStatements(sqlite3 *db){
 | 
						|
  Vdbe *p;
 | 
						|
  for(p = db->pVdbe; p; p=p->pNext){
 | 
						|
    p->expired = 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the database associated with the Vdbe.
 | 
						|
*/
 | 
						|
sqlite3 *sqlite3VdbeDb(Vdbe *v){
 | 
						|
  return v->db;
 | 
						|
}
 |