520 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
//
 | 
						|
// INFTREES.CPP
 | 
						|
//
 | 
						|
//  Source file for ArchiveLib 2.0
 | 
						|
//
 | 
						|
//  No Copyright claimed by Greenleaf Software!
 | 
						|
//
 | 
						|
// DESCRIPTION
 | 
						|
//
 | 
						|
//  This is one of the ZLIB source files, with as few changes as possible.
 | 
						|
//
 | 
						|
// REVISION HISTORY
 | 
						|
//
 | 
						|
//   February 14, 1996  2.0A : New release
 | 
						|
 | 
						|
#include "arclib.h"
 | 
						|
#if !defined( AL_IBM )
 | 
						|
#pragma hdrstop
 | 
						|
#endif
 | 
						|
#if defined( AL_BORLAND )
 | 
						|
#pragma option -w-
 | 
						|
#endif
 | 
						|
 | 
						|
/* inftrees.c -- generate Huffman trees for efficient decoding
 | 
						|
 * Copyright (C) 1995 Mark Adler
 | 
						|
 * For conditions of distribution and use, see copyright notice in zlib.h 
 | 
						|
 */
 | 
						|
 | 
						|
#include "zutil.h"
 | 
						|
#include "inftrees.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Let's try doing without this
 | 
						|
 *
 | 
						|
 * struct internal_state  {int dummy;}; for buggy compilers
 | 
						|
 */
 | 
						|
/* simplify the use of the inflate_huft type with some defines */
 | 
						|
#define base more.Base
 | 
						|
#define next more.Next
 | 
						|
#define exop word.what.Exop
 | 
						|
#define bits word.what.Bits
 | 
						|
 | 
						|
 | 
						|
local int huft_build __P((
 | 
						|
    uInt ZL_FAR *,             /* code lengths in bits */
 | 
						|
    uInt,               /* number of codes */
 | 
						|
    uInt,               /* number of "simple" codes */
 | 
						|
    uInt ZL_FAR *,             /* list of base values for non-simple codes */
 | 
						|
    uInt ZL_FAR *,             /* list of extra bits for non-simple codes */
 | 
						|
    inflate_huft ZL_FAR * ZL_FAR *,    /* result: starting table */
 | 
						|
    uInt ZL_FAR *,             /* maximum lookup bits (returns actual) */
 | 
						|
    z_stream *));       /* for zalloc function */
 | 
						|
 | 
						|
local voidp falloc __P((
 | 
						|
    voidp,              /* opaque pointer (not used) */
 | 
						|
    uInt,               /* number of items */
 | 
						|
    uInt));             /* size of item */
 | 
						|
 | 
						|
local void ffree __P((
 | 
						|
    voidp q,            /* opaque pointer (not used) */
 | 
						|
    voidp p));          /* what to free (not used) */
 | 
						|
 | 
						|
/* Tables for deflate from PKZIP's appnote.txt. */
 | 
						|
local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
 | 
						|
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
 | 
						|
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
 | 
						|
        /* actually lengths - 2; also see note #13 above about 258 */
 | 
						|
local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
 | 
						|
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
 | 
						|
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
 | 
						|
local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
 | 
						|
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
 | 
						|
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
 | 
						|
        8193, 12289, 16385, 24577};
 | 
						|
local uInt cpdext[] = { /* Extra bits for distance codes */
 | 
						|
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
 | 
						|
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
 | 
						|
        12, 12, 13, 13};
 | 
						|
 | 
						|
/*
 | 
						|
   Huffman code decoding is performed using a multi-level table lookup.
 | 
						|
   The fastest way to decode is to simply build a lookup table whose
 | 
						|
   size is determined by the longest code.  However, the time it takes
 | 
						|
   to build this table can also be a factor if the data being decoded
 | 
						|
   is not very long.  The most common codes are necessarily the
 | 
						|
   shortest codes, so those codes dominate the decoding time, and hence
 | 
						|
   the speed.  The idea is you can have a shorter table that decodes the
 | 
						|
   shorter, more probable codes, and then point to subsidiary tables for
 | 
						|
   the longer codes.  The time it costs to decode the longer codes is
 | 
						|
   then traded against the time it takes to make longer tables.
 | 
						|
 | 
						|
   This results of this trade are in the variables lbits and dbits
 | 
						|
   below.  lbits is the number of bits the first level table for literal/
 | 
						|
   length codes can decode in one step, and dbits is the same thing for
 | 
						|
   the distance codes.  Subsequent tables are also less than or equal to
 | 
						|
   those sizes.  These values may be adjusted either when all of the
 | 
						|
   codes are shorter than that, in which case the longest code length in
 | 
						|
   bits is used, or when the shortest code is *longer* than the requested
 | 
						|
   table size, in which case the length of the shortest code in bits is
 | 
						|
   used.
 | 
						|
 | 
						|
   There are two different values for the two tables, since they code a
 | 
						|
   different number of possibilities each.  The literal/length table
 | 
						|
   codes 286 possible values, or in a flat code, a little over eight
 | 
						|
   bits.  The distance table codes 30 possible values, or a little less
 | 
						|
   than five bits, flat.  The optimum values for speed end up being
 | 
						|
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
 | 
						|
   The optimum values may differ though from machine to machine, and
 | 
						|
   possibly even between compilers.  Your mileage may vary.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
 | 
						|
#define BMAX 15         /* maximum bit length of any code */
 | 
						|
#define N_MAX 288       /* maximum number of codes in any set */
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
  uInt inflate_hufts;
 | 
						|
#endif
 | 
						|
 | 
						|
local int huft_build(
 | 
						|
uInt ZL_FAR *b,                /* code lengths in bits (all assumed <= BMAX) */
 | 
						|
uInt n,                 /* number of codes (assumed <= N_MAX) */
 | 
						|
uInt s,                 /* number of simple-valued codes (0..s-1) */
 | 
						|
uInt ZL_FAR *d,                /* list of base values for non-simple codes */
 | 
						|
uInt ZL_FAR *e,                /* list of extra bits for non-simple codes */
 | 
						|
inflate_huft ZL_FAR * ZL_FAR *t,       /* result: starting table */
 | 
						|
uInt ZL_FAR *m,                /* maximum lookup bits, returns actual */
 | 
						|
z_stream *zs )          /* for zalloc function */
 | 
						|
/* Given a list of code lengths and a maximum table size, make a set of
 | 
						|
   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
 | 
						|
   if the given code set is incomplete (the tables are still built in this
 | 
						|
   case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
 | 
						|
   over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
 | 
						|
{
 | 
						|
  uInt a;                       /* counter for codes of length k */
 | 
						|
  uInt c[BMAX+1];               /* bit length count table */
 | 
						|
  uInt f;                       /* i repeats in table every f entries */
 | 
						|
  int g;                        /* maximum code length */
 | 
						|
  int h;                        /* table level */
 | 
						|
  register uInt i;              /* counter, current code */
 | 
						|
  register uInt j;              /* counter */
 | 
						|
  register int k;               /* number of bits in current code */
 | 
						|
  int l;                        /* bits per table (returned in m) */
 | 
						|
  register uInt ZL_FAR *p;             /* pointer into c[], b[], or v[] */
 | 
						|
  register inflate_huft ZL_FAR *q;     /* points to current table */
 | 
						|
  inflate_huft r;               /* table entry for structure assignment */
 | 
						|
  inflate_huft ZL_FAR *u[BMAX];        /* table stack */
 | 
						|
  uInt v[N_MAX];                /* values in order of bit length */
 | 
						|
  register int w;               /* bits before this table == (l * h) */
 | 
						|
  uInt x[BMAX+1];               /* bit offsets, then code stack */
 | 
						|
  uInt ZL_FAR *xp;                     /* pointer into x */
 | 
						|
  int y;                        /* number of dummy codes added */
 | 
						|
  uInt z;                       /* number of entries in current table */
 | 
						|
 | 
						|
 | 
						|
  /* Generate counts for each bit length */
 | 
						|
  p = c;
 | 
						|
#define C0 *p++ = 0;
 | 
						|
#define C2 C0 C0 C0 C0
 | 
						|
#define C4 C2 C2 C2 C2
 | 
						|
  C4                            /* clear c[]--assume BMAX+1 is 16 */
 | 
						|
  p = b;  i = n;
 | 
						|
  do {
 | 
						|
    c[*p++]++;                  /* assume all entries <= BMAX */
 | 
						|
  } while (--i);
 | 
						|
  if (c[0] == n)                /* null input--all zero length codes */
 | 
						|
  {
 | 
						|
    *t = (inflate_huft ZL_FAR *)Z_NULL;
 | 
						|
    *m = 0;
 | 
						|
    return Z_OK;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /* Find minimum and maximum length, bound *m by those */
 | 
						|
  l = *m;
 | 
						|
  for (j = 1; j <= BMAX; j++)
 | 
						|
    if (c[j])
 | 
						|
      break;
 | 
						|
  k = j;                        /* minimum code length */
 | 
						|
  if ((uInt)l < j)
 | 
						|
    l = j;
 | 
						|
  for (i = BMAX; i; i--)
 | 
						|
    if (c[i])
 | 
						|
      break;
 | 
						|
  g = i;                        /* maximum code length */
 | 
						|
  if ((uInt)l > i)
 | 
						|
    l = i;
 | 
						|
  *m = l;
 | 
						|
 | 
						|
 | 
						|
  /* Adjust last length count to fill out codes, if needed */
 | 
						|
  for (y = 1 << j; j < i; j++, y <<= 1)
 | 
						|
    if ((y -= c[j]) < 0)
 | 
						|
      return Z_DATA_ERROR;
 | 
						|
  if ((y -= c[i]) < 0)
 | 
						|
    return Z_DATA_ERROR;
 | 
						|
  c[i] += y;
 | 
						|
 | 
						|
 | 
						|
  /* Generate starting offsets into the value table for each length */
 | 
						|
  x[1] = j = 0;
 | 
						|
  p = c + 1;  xp = x + 2;
 | 
						|
  while (--i) {                 /* note that i == g from above */
 | 
						|
    *xp++ = (j += *p++);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /* Make a table of values in order of bit lengths */
 | 
						|
  p = b;  i = 0;
 | 
						|
  do {
 | 
						|
    if ((j = *p++) != 0)
 | 
						|
      v[x[j]++] = i;
 | 
						|
  } while (++i < n);
 | 
						|
 | 
						|
 | 
						|
  /* Generate the Huffman codes and for each, make the table entries */
 | 
						|
  x[0] = i = 0;                 /* first Huffman code is zero */
 | 
						|
  p = v;                        /* grab values in bit order */
 | 
						|
  h = -1;                       /* no tables yet--level -1 */
 | 
						|
  w = -l;                       /* bits decoded == (l * h) */
 | 
						|
  u[0] = (inflate_huft ZL_FAR *)Z_NULL;        /* just to keep compilers happy */
 | 
						|
  q = (inflate_huft ZL_FAR *)Z_NULL;   /* ditto */
 | 
						|
  z = 0;                        /* ditto */
 | 
						|
 | 
						|
  /* go through the bit lengths (k already is bits in shortest code) */
 | 
						|
  for (; k <= g; k++)
 | 
						|
  {
 | 
						|
    a = c[k];
 | 
						|
    while (a--)
 | 
						|
    {
 | 
						|
      /* here i is the Huffman code of length k bits for value *p */
 | 
						|
      /* make tables up to required level */
 | 
						|
      while (k > w + l)
 | 
						|
      {
 | 
						|
        h++;
 | 
						|
        w += l;                 /* previous table always l bits */
 | 
						|
 | 
						|
        /* compute minimum size table less than or equal to l bits */
 | 
						|
        z = (z = g - w) > (uInt)l ? l : z;      /* table size upper limit */
 | 
						|
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
 | 
						|
        {                       /* too few codes for k-w bit table */
 | 
						|
          f -= a + 1;           /* deduct codes from patterns left */
 | 
						|
          xp = c + k;
 | 
						|
          if (j < z)
 | 
						|
            while (++j < z)     /* try smaller tables up to z bits */
 | 
						|
            {
 | 
						|
              if ((f <<= 1) <= *++xp)
 | 
						|
                break;          /* enough codes to use up j bits */
 | 
						|
              f -= *xp;         /* else deduct codes from patterns */
 | 
						|
            }
 | 
						|
        }
 | 
						|
        z = 1 << j;             /* table entries for j-bit table */
 | 
						|
 | 
						|
        /* allocate and link in new table */
 | 
						|
        if ((q = (inflate_huft ZL_FAR *)ZALLOC
 | 
						|
             (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
 | 
						|
        {
 | 
						|
          if (h)
 | 
						|
            inflate_trees_free(u[0], zs);
 | 
						|
          return Z_MEM_ERROR;   /* not enough memory */
 | 
						|
        }
 | 
						|
#ifdef DEBUG
 | 
						|
        inflate_hufts += z + 1;
 | 
						|
#endif
 | 
						|
        *t = q + 1;             /* link to list for huft_free() */
 | 
						|
        *(t = &(q->next)) = (inflate_huft ZL_FAR *)Z_NULL;
 | 
						|
        u[h] = ++q;             /* table starts after link */
 | 
						|
 | 
						|
        /* connect to last table, if there is one */
 | 
						|
        if (h)
 | 
						|
        {
 | 
						|
          x[h] = i;             /* save pattern for backing up */
 | 
						|
          r.bits = (Byte)l;     /* bits to dump before this table */
 | 
						|
          r.exop = (Byte)j;           /* bits in this table */
 | 
						|
          r.next = q;           /* pointer to this table */
 | 
						|
          j = i >> (w - l);     /* (get around Turbo C bug) */
 | 
						|
//
 | 
						|
// Watcom is probably correct in complaining about the assignment statement
 | 
						|
// shown below.  However, it's objection is to a benign condition that we
 | 
						|
// can afford to overlook.
 | 
						|
//
 | 
						|
#if defined( AL_WATCOM ) && !defined( AL_FLAT_MODEL )
 | 
						|
          _fmemcpy( (char _far *) &u[h-1][j], &r, sizeof( r ) );
 | 
						|
#else
 | 
						|
          u[h-1][j] = r;        /* connect to last table */
 | 
						|
#endif
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* set up table entry in r */
 | 
						|
      r.bits = (Byte)(k - w);
 | 
						|
      if (p >= v + n)
 | 
						|
        r.exop = 128 + 64;      /* out of values--invalid code */
 | 
						|
      else if (*p < s)
 | 
						|
      {
 | 
						|
        r.exop = (Byte) (*p < 256 ? 0 : 32 + 64);      /* 256 is end-of-block */
 | 
						|
        r.base = *p++;          /* simple code is just the value */
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        r.exop = (Byte) (e[*p - s] + 16 + 64);   /* non-simple--look up in lists */
 | 
						|
        r.base = d[*p++ - s];
 | 
						|
      }
 | 
						|
 | 
						|
      /* fill code-like entries with r */
 | 
						|
      f = 1 << (k - w);
 | 
						|
      for (j = i >> w; j < z; j += f)
 | 
						|
//
 | 
						|
// Watcom is probably correct in complaining about the assignment statement
 | 
						|
// shown below.  However, it's objection is to a benign condition that we
 | 
						|
// can afford to overlook.
 | 
						|
//
 | 
						|
#if defined( AL_WATCOM ) && !defined( AL_FLAT_MODEL )
 | 
						|
        _fmemcpy( (char _far *) (q + j), (char _far *) &r, sizeof( r ) );
 | 
						|
#else
 | 
						|
        q[j] = r;
 | 
						|
#endif
 | 
						|
      /* backwards increment the k-bit code i */
 | 
						|
      for (j = 1 << (k - 1); i & j; j >>= 1)
 | 
						|
        i ^= j;
 | 
						|
      i ^= j;
 | 
						|
 | 
						|
      /* backup over finished tables */
 | 
						|
      while ((i & ((1 << w) - 1)) != x[h])
 | 
						|
      {
 | 
						|
        h--;                    /* don't need to update q */
 | 
						|
        w -= l;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /* Return Z_BUF_ERROR if we were given an incomplete table */
 | 
						|
  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int inflate_trees_bits(
 | 
						|
uInt ZL_FAR *c,                /* 19 code lengths */
 | 
						|
uInt ZL_FAR *bb,               /* bits tree desired/actual depth */
 | 
						|
inflate_huft ZL_FAR * ZL_FAR *tb,      /* bits tree result */
 | 
						|
z_stream *z )           /* for zfree function */
 | 
						|
{
 | 
						|
  int r;
 | 
						|
 | 
						|
  r = huft_build(c, 19, 19, (uInt ZL_FAR *)Z_NULL, (uInt ZL_FAR *)Z_NULL, tb, bb, z);
 | 
						|
  if (r == Z_DATA_ERROR)
 | 
						|
    z->msg = "oversubscribed dynamic bit lengths tree";
 | 
						|
  else if (r == Z_BUF_ERROR)
 | 
						|
  {
 | 
						|
    inflate_trees_free(*tb, z);
 | 
						|
    z->msg = "incomplete dynamic bit lengths tree";
 | 
						|
    r = Z_DATA_ERROR;
 | 
						|
  }
 | 
						|
  return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int inflate_trees_dynamic(
 | 
						|
uInt nl,                /* number of literal/length codes */
 | 
						|
uInt nd,                /* number of distance codes */
 | 
						|
uInt ZL_FAR *c,                /* that many (total) code lengths */
 | 
						|
uInt ZL_FAR *bl,               /* literal desired/actual bit depth */
 | 
						|
uInt ZL_FAR *bd,               /* distance desired/actual bit depth */
 | 
						|
inflate_huft ZL_FAR * ZL_FAR *tl,      /* literal/length tree result */
 | 
						|
inflate_huft ZL_FAR * ZL_FAR *td,      /* distance tree result */
 | 
						|
z_stream *z )           /* for zfree function */
 | 
						|
{
 | 
						|
  int r;
 | 
						|
 | 
						|
  /* build literal/length tree */
 | 
						|
  if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
 | 
						|
  {
 | 
						|
    if (r == Z_DATA_ERROR)
 | 
						|
      z->msg = "oversubscribed literal/length tree";
 | 
						|
    else if (r == Z_BUF_ERROR)
 | 
						|
    {
 | 
						|
      inflate_trees_free(*tl, z);
 | 
						|
      z->msg = "incomplete literal/length tree";
 | 
						|
      r = Z_DATA_ERROR;
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
  }
 | 
						|
 | 
						|
  /* build distance tree */
 | 
						|
  if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
 | 
						|
  {
 | 
						|
    if (r == Z_DATA_ERROR)
 | 
						|
      z->msg = "oversubscribed literal/length tree";
 | 
						|
    else if (r == Z_BUF_ERROR) {
 | 
						|
#ifdef PKZIP_BUG_WORKAROUND
 | 
						|
      r = Z_OK;
 | 
						|
    }
 | 
						|
#else
 | 
						|
      inflate_trees_free(*td, z);
 | 
						|
      z->msg = "incomplete literal/length tree";
 | 
						|
      r = Z_DATA_ERROR;
 | 
						|
    }
 | 
						|
    inflate_trees_free(*tl, z);
 | 
						|
    return r;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  /* done */
 | 
						|
  return Z_OK;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* build fixed tables only once--keep them here */
 | 
						|
local int fixed_lock = 0;
 | 
						|
local int fixed_built = 0;
 | 
						|
#define FIXEDH 530      /* number of hufts used by fixed tables */
 | 
						|
local uInt fixed_left = FIXEDH;
 | 
						|
local inflate_huft fixed_mem[FIXEDH];
 | 
						|
local uInt fixed_bl;
 | 
						|
local uInt fixed_bd;
 | 
						|
local inflate_huft ZL_FAR *fixed_tl;
 | 
						|
local inflate_huft ZL_FAR *fixed_td;
 | 
						|
 | 
						|
 | 
						|
local voidp falloc(
 | 
						|
voidp q,        /* opaque pointer (not used) */
 | 
						|
uInt n,         /* number of items */
 | 
						|
uInt s )        /* size of item */
 | 
						|
{
 | 
						|
  Assert(s == sizeof(inflate_huft) && n <= fixed_left,
 | 
						|
         "inflate_trees falloc overflow");
 | 
						|
  if (q) s++; /* to make some compilers happy */
 | 
						|
  fixed_left -= n;
 | 
						|
  return (voidp)(fixed_mem + fixed_left);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
local void ffree(
 | 
						|
voidp q,
 | 
						|
voidp p )
 | 
						|
{
 | 
						|
  Assert(0, "inflate_trees ffree called!");
 | 
						|
  if (q) q = p; /* to make some compilers happy */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int inflate_trees_fixed(
 | 
						|
uInt ZL_FAR *bl,               /* literal desired/actual bit depth */
 | 
						|
uInt ZL_FAR *bd,               /* distance desired/actual bit depth */
 | 
						|
inflate_huft ZL_FAR * ZL_FAR *tl,      /* literal/length tree result */
 | 
						|
inflate_huft ZL_FAR * ZL_FAR *td )     /* distance tree result */
 | 
						|
{
 | 
						|
  /* build fixed tables if not built already--lock out other instances */
 | 
						|
  while (++fixed_lock > 1)
 | 
						|
    fixed_lock--;
 | 
						|
  if (!fixed_built)
 | 
						|
  {
 | 
						|
    int k;              /* temporary variable */
 | 
						|
//
 | 
						|
// I think I can safely make this copy of the c array static.  It's
 | 
						|
// taking up more space on the stack than I want.  I don't think
 | 
						|
// anyone else can get at it while this stuff goes.  If it turns out
 | 
						|
// that this won't fly, I'll have to dynamically allocate it, along
 | 
						|
// with checking for an error.
 | 
						|
//
 | 
						|
    static unsigned c[288];    /* length list for huft_build */
 | 
						|
    z_stream z;         /* for falloc function */
 | 
						|
 | 
						|
    /* set up fake z_stream for memory routines */
 | 
						|
    z.zalloc = falloc;
 | 
						|
    z.zfree = ffree;
 | 
						|
    z.opaque = Z_NULL;
 | 
						|
 | 
						|
    /* literal table */
 | 
						|
    for (k = 0; k < 144; k++)
 | 
						|
      c[k] = 8;
 | 
						|
    for (; k < 256; k++)
 | 
						|
      c[k] = 9;
 | 
						|
    for (; k < 280; k++)
 | 
						|
      c[k] = 7;
 | 
						|
    for (; k < 288; k++)
 | 
						|
      c[k] = 8;
 | 
						|
    fixed_bl = 7;
 | 
						|
    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
 | 
						|
 | 
						|
    /* distance table */
 | 
						|
    for (k = 0; k < 30; k++)
 | 
						|
      c[k] = 5;
 | 
						|
    fixed_bd = 5;
 | 
						|
    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
 | 
						|
 | 
						|
    /* done */
 | 
						|
    fixed_built = 1;
 | 
						|
  }
 | 
						|
  fixed_lock--;
 | 
						|
  *bl = fixed_bl;
 | 
						|
  *bd = fixed_bd;
 | 
						|
  *tl = fixed_tl;
 | 
						|
  *td = fixed_td;
 | 
						|
  return Z_OK;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int inflate_trees_free(
 | 
						|
inflate_huft ZL_FAR *t,        /* table to free */
 | 
						|
z_stream *z )           /* for zfree function */
 | 
						|
/* Free the malloc'ed tables built by huft_build(), which makes a linked
 | 
						|
   list of the tables it made, with the links in a dummy first entry of
 | 
						|
   each table. */
 | 
						|
{
 | 
						|
  register inflate_huft ZL_FAR *p, ZL_FAR *q;
 | 
						|
 | 
						|
  /* Go through linked list, freeing from the malloced (t[-1]) address. */
 | 
						|
  p = t;
 | 
						|
  while (p != Z_NULL)
 | 
						|
  {
 | 
						|
    q = (--p)->next;
 | 
						|
    ZFREE(z,p);
 | 
						|
    p = q;
 | 
						|
  }
 | 
						|
  return Z_OK;
 | 
						|
}
 |