git-svn-id: svn://10.65.10.50/branches/R_10_00@23289 c028cbd2-c16b-5b4b-a496-9718f37d4682
		
			
				
	
	
		
			305 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			305 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
 | 
						|
 * MD4 Message-Digest Algorithm (RFC 1320).
 | 
						|
 *
 | 
						|
 * Homepage:
 | 
						|
 http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
 | 
						|
 *
 | 
						|
 * Author:
 | 
						|
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
 | 
						|
 *
 | 
						|
 * This software was written by Alexander Peslyak in 2001.  No copyright is
 | 
						|
 * claimed, and the software is hereby placed in the public domain.  In case
 | 
						|
 * this attempt to disclaim copyright and place the software in the public
 | 
						|
 * domain is deemed null and void, then the software is Copyright (c) 2001
 | 
						|
 * Alexander Peslyak and it is hereby released to the general public under the
 | 
						|
 * following terms:
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted.
 | 
						|
 *
 | 
						|
 * There's ABSOLUTELY NO WARRANTY, express or implied.
 | 
						|
 *
 | 
						|
 * (This is a heavily cut-down "BSD license".)
 | 
						|
 *
 | 
						|
 * This differs from Colin Plumb's older public domain implementation in that
 | 
						|
 * no exactly 32-bit integer data type is required (any 32-bit or wider
 | 
						|
 * unsigned integer data type will do), there's no compile-time endianness
 | 
						|
 * configuration, and the function prototypes match OpenSSL's.  No code from
 | 
						|
 * Colin Plumb's implementation has been reused; this comment merely compares
 | 
						|
 * the properties of the two independent implementations.
 | 
						|
 *
 | 
						|
 * The primary goals of this implementation are portability and ease of use.
 | 
						|
 * It is meant to be fast, but not as fast as possible.  Some known
 | 
						|
 * optimizations are not included to reduce source code size and avoid
 | 
						|
 * compile-time configuration.
 | 
						|
 */
 | 
						|
 | 
						|
#include "curl_setup.h"
 | 
						|
 | 
						|
/* NSS and OS/400 crypto library do not provide the MD4 hash algorithm, so
 | 
						|
 * that we have a local implementation of it */
 | 
						|
#if defined(USE_NSS) || defined(USE_OS400CRYPTO)
 | 
						|
 | 
						|
#include "curl_md4.h"
 | 
						|
#include "warnless.h"
 | 
						|
 | 
						|
#ifndef HAVE_OPENSSL
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
/* Any 32-bit or wider unsigned integer data type will do */
 | 
						|
typedef unsigned int MD4_u32plus;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  MD4_u32plus lo, hi;
 | 
						|
  MD4_u32plus a, b, c, d;
 | 
						|
  unsigned char buffer[64];
 | 
						|
  MD4_u32plus block[16];
 | 
						|
} MD4_CTX;
 | 
						|
 | 
						|
static void MD4_Init(MD4_CTX *ctx);
 | 
						|
static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size);
 | 
						|
static void MD4_Final(unsigned char *result, MD4_CTX *ctx);
 | 
						|
 | 
						|
/*
 | 
						|
 * The basic MD4 functions.
 | 
						|
 *
 | 
						|
 * F and G are optimized compared to their RFC 1320 definitions, with the
 | 
						|
 * optimization for F borrowed from Colin Plumb's MD5 implementation.
 | 
						|
 */
 | 
						|
#define F(x, y, z)                      ((z) ^ ((x) & ((y) ^ (z))))
 | 
						|
#define G(x, y, z)                      (((x) & ((y) | (z))) | ((y) & (z)))
 | 
						|
#define H(x, y, z)                      ((x) ^ (y) ^ (z))
 | 
						|
 | 
						|
/*
 | 
						|
 * The MD4 transformation for all three rounds.
 | 
						|
 */
 | 
						|
#define STEP(f, a, b, c, d, x, s) \
 | 
						|
        (a) += f((b), (c), (d)) + (x); \
 | 
						|
        (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));
 | 
						|
 | 
						|
/*
 | 
						|
 * SET reads 4 input bytes in little-endian byte order and stores them
 | 
						|
 * in a properly aligned word in host byte order.
 | 
						|
 *
 | 
						|
 * The check for little-endian architectures that tolerate unaligned
 | 
						|
 * memory accesses is just an optimization.  Nothing will break if it
 | 
						|
 * doesn't work.
 | 
						|
 */
 | 
						|
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
 | 
						|
#define SET(n) \
 | 
						|
        (*(MD4_u32plus *)&ptr[(n) * 4])
 | 
						|
#define GET(n) \
 | 
						|
        SET(n)
 | 
						|
#else
 | 
						|
#define SET(n) \
 | 
						|
        (ctx->block[(n)] = \
 | 
						|
        (MD4_u32plus)ptr[(n) * 4] | \
 | 
						|
        ((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \
 | 
						|
        ((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \
 | 
						|
        ((MD4_u32plus)ptr[(n) * 4 + 3] << 24))
 | 
						|
#define GET(n) \
 | 
						|
        (ctx->block[(n)])
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This processes one or more 64-byte data blocks, but does NOT update
 | 
						|
 * the bit counters.  There are no alignment requirements.
 | 
						|
 */
 | 
						|
static const void *body(MD4_CTX *ctx, const void *data, unsigned long size)
 | 
						|
{
 | 
						|
  const unsigned char *ptr;
 | 
						|
  MD4_u32plus a, b, c, d;
 | 
						|
  MD4_u32plus saved_a, saved_b, saved_c, saved_d;
 | 
						|
 | 
						|
  ptr = (const unsigned char *)data;
 | 
						|
 | 
						|
  a = ctx->a;
 | 
						|
  b = ctx->b;
 | 
						|
  c = ctx->c;
 | 
						|
  d = ctx->d;
 | 
						|
 | 
						|
  do {
 | 
						|
    saved_a = a;
 | 
						|
    saved_b = b;
 | 
						|
    saved_c = c;
 | 
						|
    saved_d = d;
 | 
						|
 | 
						|
/* Round 1 */
 | 
						|
    STEP(F, a, b, c, d, SET(0), 3)
 | 
						|
      STEP(F, d, a, b, c, SET(1), 7)
 | 
						|
      STEP(F, c, d, a, b, SET(2), 11)
 | 
						|
      STEP(F, b, c, d, a, SET(3), 19)
 | 
						|
      STEP(F, a, b, c, d, SET(4), 3)
 | 
						|
      STEP(F, d, a, b, c, SET(5), 7)
 | 
						|
      STEP(F, c, d, a, b, SET(6), 11)
 | 
						|
      STEP(F, b, c, d, a, SET(7), 19)
 | 
						|
      STEP(F, a, b, c, d, SET(8), 3)
 | 
						|
      STEP(F, d, a, b, c, SET(9), 7)
 | 
						|
      STEP(F, c, d, a, b, SET(10), 11)
 | 
						|
      STEP(F, b, c, d, a, SET(11), 19)
 | 
						|
      STEP(F, a, b, c, d, SET(12), 3)
 | 
						|
      STEP(F, d, a, b, c, SET(13), 7)
 | 
						|
      STEP(F, c, d, a, b, SET(14), 11)
 | 
						|
      STEP(F, b, c, d, a, SET(15), 19)
 | 
						|
 | 
						|
/* Round 2 */
 | 
						|
      STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3)
 | 
						|
      STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5)
 | 
						|
      STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9)
 | 
						|
      STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13)
 | 
						|
      STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3)
 | 
						|
      STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5)
 | 
						|
      STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9)
 | 
						|
      STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13)
 | 
						|
      STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3)
 | 
						|
      STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5)
 | 
						|
      STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9)
 | 
						|
      STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13)
 | 
						|
      STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3)
 | 
						|
      STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5)
 | 
						|
      STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9)
 | 
						|
      STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13)
 | 
						|
 | 
						|
/* Round 3 */
 | 
						|
      STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3)
 | 
						|
      STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9)
 | 
						|
      STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11)
 | 
						|
      STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15)
 | 
						|
      STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3)
 | 
						|
      STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9)
 | 
						|
      STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11)
 | 
						|
      STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15)
 | 
						|
      STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3)
 | 
						|
      STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9)
 | 
						|
      STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11)
 | 
						|
      STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15)
 | 
						|
      STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3)
 | 
						|
      STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9)
 | 
						|
      STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11)
 | 
						|
      STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15)
 | 
						|
 | 
						|
      a += saved_a;
 | 
						|
    b += saved_b;
 | 
						|
    c += saved_c;
 | 
						|
    d += saved_d;
 | 
						|
 | 
						|
    ptr += 64;
 | 
						|
  } while(size -= 64);
 | 
						|
 | 
						|
  ctx->a = a;
 | 
						|
  ctx->b = b;
 | 
						|
  ctx->c = c;
 | 
						|
  ctx->d = d;
 | 
						|
 | 
						|
  return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static void MD4_Init(MD4_CTX *ctx)
 | 
						|
{
 | 
						|
  ctx->a = 0x67452301;
 | 
						|
  ctx->b = 0xefcdab89;
 | 
						|
  ctx->c = 0x98badcfe;
 | 
						|
  ctx->d = 0x10325476;
 | 
						|
 | 
						|
  ctx->lo = 0;
 | 
						|
  ctx->hi = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size)
 | 
						|
{
 | 
						|
  MD4_u32plus saved_lo;
 | 
						|
  unsigned long used, available;
 | 
						|
 | 
						|
  saved_lo = ctx->lo;
 | 
						|
  if((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
 | 
						|
    ctx->hi++;
 | 
						|
  ctx->hi += (MD4_u32plus)size >> 29;
 | 
						|
 | 
						|
  used = saved_lo & 0x3f;
 | 
						|
 | 
						|
  if(used) {
 | 
						|
    available = 64 - used;
 | 
						|
 | 
						|
    if(size < available) {
 | 
						|
      memcpy(&ctx->buffer[used], data, size);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    memcpy(&ctx->buffer[used], data, available);
 | 
						|
    data = (const unsigned char *)data + available;
 | 
						|
    size -= available;
 | 
						|
    body(ctx, ctx->buffer, 64);
 | 
						|
  }
 | 
						|
 | 
						|
  if(size >= 64) {
 | 
						|
    data = body(ctx, data, size & ~(unsigned long)0x3f);
 | 
						|
    size &= 0x3f;
 | 
						|
  }
 | 
						|
 | 
						|
  memcpy(ctx->buffer, data, size);
 | 
						|
}
 | 
						|
 | 
						|
static void MD4_Final(unsigned char *result, MD4_CTX *ctx)
 | 
						|
{
 | 
						|
  unsigned long used, available;
 | 
						|
 | 
						|
  used = ctx->lo & 0x3f;
 | 
						|
 | 
						|
  ctx->buffer[used++] = 0x80;
 | 
						|
 | 
						|
  available = 64 - used;
 | 
						|
 | 
						|
  if(available < 8) {
 | 
						|
    memset(&ctx->buffer[used], 0, available);
 | 
						|
    body(ctx, ctx->buffer, 64);
 | 
						|
    used = 0;
 | 
						|
    available = 64;
 | 
						|
  }
 | 
						|
 | 
						|
  memset(&ctx->buffer[used], 0, available - 8);
 | 
						|
 | 
						|
  ctx->lo <<= 3;
 | 
						|
  ctx->buffer[56] = curlx_ultouc((ctx->lo)&0xff);
 | 
						|
  ctx->buffer[57] = curlx_ultouc((ctx->lo >> 8)&0xff);
 | 
						|
  ctx->buffer[58] = curlx_ultouc((ctx->lo >> 16)&0xff);
 | 
						|
  ctx->buffer[59] = curlx_ultouc((ctx->lo >> 24)&0xff);
 | 
						|
  ctx->buffer[60] = curlx_ultouc((ctx->hi)&0xff);
 | 
						|
  ctx->buffer[61] = curlx_ultouc((ctx->hi >> 8)&0xff);
 | 
						|
  ctx->buffer[62] = curlx_ultouc((ctx->hi >> 16)&0xff);
 | 
						|
  ctx->buffer[63] = curlx_ultouc(ctx->hi >> 24);
 | 
						|
 | 
						|
  body(ctx, ctx->buffer, 64);
 | 
						|
 | 
						|
  result[0] = curlx_ultouc((ctx->a)&0xff);
 | 
						|
  result[1] = curlx_ultouc((ctx->a >> 8)&0xff);
 | 
						|
  result[2] = curlx_ultouc((ctx->a >> 16)&0xff);
 | 
						|
  result[3] = curlx_ultouc(ctx->a >> 24);
 | 
						|
  result[4] = curlx_ultouc((ctx->b)&0xff);
 | 
						|
  result[5] = curlx_ultouc((ctx->b >> 8)&0xff);
 | 
						|
  result[6] = curlx_ultouc((ctx->b >> 16)&0xff);
 | 
						|
  result[7] = curlx_ultouc(ctx->b >> 24);
 | 
						|
  result[8] = curlx_ultouc((ctx->c)&0xff);
 | 
						|
  result[9] = curlx_ultouc((ctx->c >> 8)&0xff);
 | 
						|
  result[10] = curlx_ultouc((ctx->c >> 16)&0xff);
 | 
						|
  result[11] = curlx_ultouc(ctx->c >> 24);
 | 
						|
  result[12] = curlx_ultouc((ctx->d)&0xff);
 | 
						|
  result[13] = curlx_ultouc((ctx->d >> 8)&0xff);
 | 
						|
  result[14] = curlx_ultouc((ctx->d >> 16)&0xff);
 | 
						|
  result[15] = curlx_ultouc(ctx->d >> 24);
 | 
						|
 | 
						|
  memset(ctx, 0, sizeof(*ctx));
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
void Curl_md4it(unsigned char *output, const unsigned char *input, size_t len)
 | 
						|
{
 | 
						|
  MD4_CTX ctx;
 | 
						|
  MD4_Init(&ctx);
 | 
						|
  MD4_Update(&ctx, input, curlx_uztoui(len));
 | 
						|
  MD4_Final(output, &ctx);
 | 
						|
}
 | 
						|
#endif /* defined(USE_NSS) || defined(USE_OS400CRYPTO) */
 |