Files correlati : sqlite Ricompilazione Demo : [ ] Commento : Passaggio da Sqlite 2 a Sqlite 3.3.5 git-svn-id: svn://10.65.10.50/trunk@13902 c028cbd2-c16b-5b4b-a496-9718f37d4682
		
			
				
	
	
		
			3230 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			3230 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
** 2001 September 15
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** This file contains C code routines that are called by the SQLite parser
 | 
						|
** when syntax rules are reduced.  The routines in this file handle the
 | 
						|
** following kinds of SQL syntax:
 | 
						|
**
 | 
						|
**     CREATE TABLE
 | 
						|
**     DROP TABLE
 | 
						|
**     CREATE INDEX
 | 
						|
**     DROP INDEX
 | 
						|
**     creating ID lists
 | 
						|
**     BEGIN TRANSACTION
 | 
						|
**     COMMIT
 | 
						|
**     ROLLBACK
 | 
						|
**
 | 
						|
** $Id: build.c,v 1.2 2006-04-13 12:44:29 guy Exp $
 | 
						|
*/
 | 
						|
#include "sqliteInt.h"
 | 
						|
#include <ctype.h>
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called when a new SQL statement is beginning to
 | 
						|
** be parsed.  Initialize the pParse structure as needed.
 | 
						|
*/
 | 
						|
void sqlite3BeginParse(Parse *pParse, int explainFlag){
 | 
						|
  pParse->explain = explainFlag;
 | 
						|
  pParse->nVar = 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_SHARED_CACHE
 | 
						|
/*
 | 
						|
** The TableLock structure is only used by the sqlite3TableLock() and
 | 
						|
** codeTableLocks() functions.
 | 
						|
*/
 | 
						|
struct TableLock {
 | 
						|
  int iDb;             /* The database containing the table to be locked */
 | 
						|
  int iTab;            /* The root page of the table to be locked */
 | 
						|
  u8 isWriteLock;      /* True for write lock.  False for a read lock */
 | 
						|
  const char *zName;   /* Name of the table */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** Record the fact that we want to lock a table at run-time.  
 | 
						|
**
 | 
						|
** The table to be locked has root page iTab and is found in database iDb.
 | 
						|
** A read or a write lock can be taken depending on isWritelock.
 | 
						|
**
 | 
						|
** This routine just records the fact that the lock is desired.  The
 | 
						|
** code to make the lock occur is generated by a later call to
 | 
						|
** codeTableLocks() which occurs during sqlite3FinishCoding().
 | 
						|
*/
 | 
						|
void sqlite3TableLock(
 | 
						|
  Parse *pParse,     /* Parsing context */
 | 
						|
  int iDb,           /* Index of the database containing the table to lock */
 | 
						|
  int iTab,          /* Root page number of the table to be locked */
 | 
						|
  u8 isWriteLock,    /* True for a write lock */
 | 
						|
  const char *zName  /* Name of the table to be locked */
 | 
						|
){
 | 
						|
  int i;
 | 
						|
  int nBytes;
 | 
						|
  TableLock *p;
 | 
						|
 | 
						|
  if( 0==sqlite3ThreadDataReadOnly()->useSharedData || iDb<0 ){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for(i=0; i<pParse->nTableLock; i++){
 | 
						|
    p = &pParse->aTableLock[i];
 | 
						|
    if( p->iDb==iDb && p->iTab==iTab ){
 | 
						|
      p->isWriteLock = (p->isWriteLock || isWriteLock);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
 | 
						|
  sqliteReallocOrFree((void **)&pParse->aTableLock, nBytes);
 | 
						|
  if( pParse->aTableLock ){
 | 
						|
    p = &pParse->aTableLock[pParse->nTableLock++];
 | 
						|
    p->iDb = iDb;
 | 
						|
    p->iTab = iTab;
 | 
						|
    p->isWriteLock = isWriteLock;
 | 
						|
    p->zName = zName;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Code an OP_TableLock instruction for each table locked by the
 | 
						|
** statement (configured by calls to sqlite3TableLock()).
 | 
						|
*/
 | 
						|
static void codeTableLocks(Parse *pParse){
 | 
						|
  int i;
 | 
						|
  Vdbe *pVdbe; 
 | 
						|
  assert( sqlite3ThreadDataReadOnly()->useSharedData || pParse->nTableLock==0 );
 | 
						|
 | 
						|
  if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for(i=0; i<pParse->nTableLock; i++){
 | 
						|
    TableLock *p = &pParse->aTableLock[i];
 | 
						|
    int p1 = p->iDb;
 | 
						|
    if( p->isWriteLock ){
 | 
						|
      p1 = -1*(p1+1);
 | 
						|
    }
 | 
						|
    sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
 | 
						|
  }
 | 
						|
}
 | 
						|
#else
 | 
						|
  #define codeTableLocks(x)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called after a single SQL statement has been
 | 
						|
** parsed and a VDBE program to execute that statement has been
 | 
						|
** prepared.  This routine puts the finishing touches on the
 | 
						|
** VDBE program and resets the pParse structure for the next
 | 
						|
** parse.
 | 
						|
**
 | 
						|
** Note that if an error occurred, it might be the case that
 | 
						|
** no VDBE code was generated.
 | 
						|
*/
 | 
						|
void sqlite3FinishCoding(Parse *pParse){
 | 
						|
  sqlite3 *db;
 | 
						|
  Vdbe *v;
 | 
						|
 | 
						|
  if( sqlite3MallocFailed() ) return;
 | 
						|
  if( pParse->nested ) return;
 | 
						|
  if( !pParse->pVdbe ){
 | 
						|
    if( pParse->rc==SQLITE_OK && pParse->nErr ){
 | 
						|
      pParse->rc = SQLITE_ERROR;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Begin by generating some termination code at the end of the
 | 
						|
  ** vdbe program
 | 
						|
  */
 | 
						|
  db = pParse->db;
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v ){
 | 
						|
    sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
 | 
						|
 | 
						|
    /* The cookie mask contains one bit for each database file open.
 | 
						|
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
 | 
						|
    ** set for each database that is used.  Generate code to start a
 | 
						|
    ** transaction on each used database and to verify the schema cookie
 | 
						|
    ** on each used database.
 | 
						|
    */
 | 
						|
    if( pParse->cookieGoto>0 ){
 | 
						|
      u32 mask;
 | 
						|
      int iDb;
 | 
						|
      sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
 | 
						|
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
 | 
						|
        if( (mask & pParse->cookieMask)==0 ) continue;
 | 
						|
        sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
 | 
						|
        sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Once all the cookies have been verified and transactions opened, 
 | 
						|
      ** obtain the required table-locks. This is a no-op unless the 
 | 
						|
      ** shared-cache feature is enabled.
 | 
						|
      */
 | 
						|
      codeTableLocks(pParse);
 | 
						|
      sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_TRACE
 | 
						|
    /* Add a No-op that contains the complete text of the compiled SQL
 | 
						|
    ** statement as its P3 argument.  This does not change the functionality
 | 
						|
    ** of the program. 
 | 
						|
    **
 | 
						|
    ** This is used to implement sqlite3_trace().
 | 
						|
    */
 | 
						|
    sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
 | 
						|
#endif /* SQLITE_OMIT_TRACE */
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /* Get the VDBE program ready for execution
 | 
						|
  */
 | 
						|
  if( v && pParse->nErr==0 && !sqlite3MallocFailed() ){
 | 
						|
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
 | 
						|
    sqlite3VdbeTrace(v, trace);
 | 
						|
    sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
 | 
						|
                         pParse->nTab+3, pParse->explain);
 | 
						|
    pParse->rc = SQLITE_DONE;
 | 
						|
    pParse->colNamesSet = 0;
 | 
						|
  }else if( pParse->rc==SQLITE_OK ){
 | 
						|
    pParse->rc = SQLITE_ERROR;
 | 
						|
  }
 | 
						|
  pParse->nTab = 0;
 | 
						|
  pParse->nMem = 0;
 | 
						|
  pParse->nSet = 0;
 | 
						|
  pParse->nVar = 0;
 | 
						|
  pParse->cookieMask = 0;
 | 
						|
  pParse->cookieGoto = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Run the parser and code generator recursively in order to generate
 | 
						|
** code for the SQL statement given onto the end of the pParse context
 | 
						|
** currently under construction.  When the parser is run recursively
 | 
						|
** this way, the final OP_Halt is not appended and other initialization
 | 
						|
** and finalization steps are omitted because those are handling by the
 | 
						|
** outermost parser.
 | 
						|
**
 | 
						|
** Not everything is nestable.  This facility is designed to permit
 | 
						|
** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
 | 
						|
** care if you decide to try to use this routine for some other purposes.
 | 
						|
*/
 | 
						|
void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
 | 
						|
  va_list ap;
 | 
						|
  char *zSql;
 | 
						|
# define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
 | 
						|
  char saveBuf[SAVE_SZ];
 | 
						|
 | 
						|
  if( pParse->nErr ) return;
 | 
						|
  assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
 | 
						|
  va_start(ap, zFormat);
 | 
						|
  zSql = sqlite3VMPrintf(zFormat, ap);
 | 
						|
  va_end(ap);
 | 
						|
  if( zSql==0 ){
 | 
						|
    return;   /* A malloc must have failed */
 | 
						|
  }
 | 
						|
  pParse->nested++;
 | 
						|
  memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
 | 
						|
  memset(&pParse->nVar, 0, SAVE_SZ);
 | 
						|
  sqlite3RunParser(pParse, zSql, 0);
 | 
						|
  sqliteFree(zSql);
 | 
						|
  memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
 | 
						|
  pParse->nested--;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Locate the in-memory structure that describes a particular database
 | 
						|
** table given the name of that table and (optionally) the name of the
 | 
						|
** database containing the table.  Return NULL if not found.
 | 
						|
**
 | 
						|
** If zDatabase is 0, all databases are searched for the table and the
 | 
						|
** first matching table is returned.  (No checking for duplicate table
 | 
						|
** names is done.)  The search order is TEMP first, then MAIN, then any
 | 
						|
** auxiliary databases added using the ATTACH command.
 | 
						|
**
 | 
						|
** See also sqlite3LocateTable().
 | 
						|
*/
 | 
						|
Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
 | 
						|
  Table *p = 0;
 | 
						|
  int i;
 | 
						|
  assert( zName!=0 );
 | 
						|
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
 | 
						|
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
 | 
						|
    if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
 | 
						|
    p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
 | 
						|
    if( p ) break;
 | 
						|
  }
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Locate the in-memory structure that describes a particular database
 | 
						|
** table given the name of that table and (optionally) the name of the
 | 
						|
** database containing the table.  Return NULL if not found.  Also leave an
 | 
						|
** error message in pParse->zErrMsg.
 | 
						|
**
 | 
						|
** The difference between this routine and sqlite3FindTable() is that this
 | 
						|
** routine leaves an error message in pParse->zErrMsg where
 | 
						|
** sqlite3FindTable() does not.
 | 
						|
*/
 | 
						|
Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
 | 
						|
  Table *p;
 | 
						|
 | 
						|
  /* Read the database schema. If an error occurs, leave an error message
 | 
						|
  ** and code in pParse and return NULL. */
 | 
						|
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  p = sqlite3FindTable(pParse->db, zName, zDbase);
 | 
						|
  if( p==0 ){
 | 
						|
    if( zDbase ){
 | 
						|
      sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
 | 
						|
    }else{
 | 
						|
      sqlite3ErrorMsg(pParse, "no such table: %s", zName);
 | 
						|
    }
 | 
						|
    pParse->checkSchema = 1;
 | 
						|
  }
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Locate the in-memory structure that describes 
 | 
						|
** a particular index given the name of that index
 | 
						|
** and the name of the database that contains the index.
 | 
						|
** Return NULL if not found.
 | 
						|
**
 | 
						|
** If zDatabase is 0, all databases are searched for the
 | 
						|
** table and the first matching index is returned.  (No checking
 | 
						|
** for duplicate index names is done.)  The search order is
 | 
						|
** TEMP first, then MAIN, then any auxiliary databases added
 | 
						|
** using the ATTACH command.
 | 
						|
*/
 | 
						|
Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
 | 
						|
  Index *p = 0;
 | 
						|
  int i;
 | 
						|
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
 | 
						|
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
 | 
						|
    Schema *pSchema = db->aDb[j].pSchema;
 | 
						|
    if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
 | 
						|
    assert( pSchema || (j==1 && !db->aDb[1].pBt) );
 | 
						|
    if( pSchema ){
 | 
						|
      p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
 | 
						|
    }
 | 
						|
    if( p ) break;
 | 
						|
  }
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Reclaim the memory used by an index
 | 
						|
*/
 | 
						|
static void freeIndex(Index *p){
 | 
						|
  sqliteFree(p->zColAff);
 | 
						|
  sqliteFree(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Remove the given index from the index hash table, and free
 | 
						|
** its memory structures.
 | 
						|
**
 | 
						|
** The index is removed from the database hash tables but
 | 
						|
** it is not unlinked from the Table that it indexes.
 | 
						|
** Unlinking from the Table must be done by the calling function.
 | 
						|
*/
 | 
						|
static void sqliteDeleteIndex(Index *p){
 | 
						|
  Index *pOld;
 | 
						|
  const char *zName = p->zName;
 | 
						|
 | 
						|
  pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
 | 
						|
  assert( pOld==0 || pOld==p );
 | 
						|
  freeIndex(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** For the index called zIdxName which is found in the database iDb,
 | 
						|
** unlike that index from its Table then remove the index from
 | 
						|
** the index hash table and free all memory structures associated
 | 
						|
** with the index.
 | 
						|
*/
 | 
						|
void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
 | 
						|
  Index *pIndex;
 | 
						|
  int len;
 | 
						|
  Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
 | 
						|
 | 
						|
  len = strlen(zIdxName);
 | 
						|
  pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
 | 
						|
  if( pIndex ){
 | 
						|
    if( pIndex->pTable->pIndex==pIndex ){
 | 
						|
      pIndex->pTable->pIndex = pIndex->pNext;
 | 
						|
    }else{
 | 
						|
      Index *p;
 | 
						|
      for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
 | 
						|
      if( p && p->pNext==pIndex ){
 | 
						|
        p->pNext = pIndex->pNext;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    freeIndex(pIndex);
 | 
						|
  }
 | 
						|
  db->flags |= SQLITE_InternChanges;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Erase all schema information from the in-memory hash tables of
 | 
						|
** a single database.  This routine is called to reclaim memory
 | 
						|
** before the database closes.  It is also called during a rollback
 | 
						|
** if there were schema changes during the transaction or if a
 | 
						|
** schema-cookie mismatch occurs.
 | 
						|
**
 | 
						|
** If iDb<=0 then reset the internal schema tables for all database
 | 
						|
** files.  If iDb>=2 then reset the internal schema for only the
 | 
						|
** single file indicated.
 | 
						|
*/
 | 
						|
void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
 | 
						|
  int i, j;
 | 
						|
 | 
						|
  assert( iDb>=0 && iDb<db->nDb );
 | 
						|
  for(i=iDb; i<db->nDb; i++){
 | 
						|
    Db *pDb = &db->aDb[i];
 | 
						|
    if( pDb->pSchema ){
 | 
						|
      sqlite3SchemaFree(pDb->pSchema);
 | 
						|
    }
 | 
						|
    if( iDb>0 ) return;
 | 
						|
  }
 | 
						|
  assert( iDb==0 );
 | 
						|
  db->flags &= ~SQLITE_InternChanges;
 | 
						|
 | 
						|
  /* If one or more of the auxiliary database files has been closed,
 | 
						|
  ** then remove them from the auxiliary database list.  We take the
 | 
						|
  ** opportunity to do this here since we have just deleted all of the
 | 
						|
  ** schema hash tables and therefore do not have to make any changes
 | 
						|
  ** to any of those tables.
 | 
						|
  */
 | 
						|
  for(i=0; i<db->nDb; i++){
 | 
						|
    struct Db *pDb = &db->aDb[i];
 | 
						|
    if( pDb->pBt==0 ){
 | 
						|
      if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
 | 
						|
      pDb->pAux = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for(i=j=2; i<db->nDb; i++){
 | 
						|
    struct Db *pDb = &db->aDb[i];
 | 
						|
    if( pDb->pBt==0 ){
 | 
						|
      sqliteFree(pDb->zName);
 | 
						|
      pDb->zName = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if( j<i ){
 | 
						|
      db->aDb[j] = db->aDb[i];
 | 
						|
    }
 | 
						|
    j++;
 | 
						|
  }
 | 
						|
  memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
 | 
						|
  db->nDb = j;
 | 
						|
  if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
 | 
						|
    memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
 | 
						|
    sqliteFree(db->aDb);
 | 
						|
    db->aDb = db->aDbStatic;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called whenever a rollback occurs.  If there were
 | 
						|
** schema changes during the transaction, then we have to reset the
 | 
						|
** internal hash tables and reload them from disk.
 | 
						|
*/
 | 
						|
void sqlite3RollbackInternalChanges(sqlite3 *db){
 | 
						|
  if( db->flags & SQLITE_InternChanges ){
 | 
						|
    sqlite3ResetInternalSchema(db, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called when a commit occurs.
 | 
						|
*/
 | 
						|
void sqlite3CommitInternalChanges(sqlite3 *db){
 | 
						|
  db->flags &= ~SQLITE_InternChanges;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Clear the column names from a table or view.
 | 
						|
*/
 | 
						|
static void sqliteResetColumnNames(Table *pTable){
 | 
						|
  int i;
 | 
						|
  Column *pCol;
 | 
						|
  assert( pTable!=0 );
 | 
						|
  if( (pCol = pTable->aCol)!=0 ){
 | 
						|
    for(i=0; i<pTable->nCol; i++, pCol++){
 | 
						|
      sqliteFree(pCol->zName);
 | 
						|
      sqlite3ExprDelete(pCol->pDflt);
 | 
						|
      sqliteFree(pCol->zType);
 | 
						|
      sqliteFree(pCol->zColl);
 | 
						|
    }
 | 
						|
    sqliteFree(pTable->aCol);
 | 
						|
  }
 | 
						|
  pTable->aCol = 0;
 | 
						|
  pTable->nCol = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Remove the memory data structures associated with the given
 | 
						|
** Table.  No changes are made to disk by this routine.
 | 
						|
**
 | 
						|
** This routine just deletes the data structure.  It does not unlink
 | 
						|
** the table data structure from the hash table.  Nor does it remove
 | 
						|
** foreign keys from the sqlite.aFKey hash table.  But it does destroy
 | 
						|
** memory structures of the indices and foreign keys associated with 
 | 
						|
** the table.
 | 
						|
**
 | 
						|
** Indices associated with the table are unlinked from the "db"
 | 
						|
** data structure if db!=NULL.  If db==NULL, indices attached to
 | 
						|
** the table are deleted, but it is assumed they have already been
 | 
						|
** unlinked.
 | 
						|
*/
 | 
						|
void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
 | 
						|
  Index *pIndex, *pNext;
 | 
						|
  FKey *pFKey, *pNextFKey;
 | 
						|
 | 
						|
  db = 0;
 | 
						|
 | 
						|
  if( pTable==0 ) return;
 | 
						|
 | 
						|
  /* Do not delete the table until the reference count reaches zero. */
 | 
						|
  pTable->nRef--;
 | 
						|
  if( pTable->nRef>0 ){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert( pTable->nRef==0 );
 | 
						|
 | 
						|
  /* Delete all indices associated with this table
 | 
						|
  */
 | 
						|
  for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
 | 
						|
    pNext = pIndex->pNext;
 | 
						|
    assert( pIndex->pSchema==pTable->pSchema );
 | 
						|
    sqliteDeleteIndex(pIndex);
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
						|
  /* Delete all foreign keys associated with this table.  The keys
 | 
						|
  ** should have already been unlinked from the db->aFKey hash table 
 | 
						|
  */
 | 
						|
  for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
 | 
						|
    pNextFKey = pFKey->pNextFrom;
 | 
						|
    assert( sqlite3HashFind(&pTable->pSchema->aFKey,
 | 
						|
                           pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
 | 
						|
    sqliteFree(pFKey);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Delete the Table structure itself.
 | 
						|
  */
 | 
						|
  sqliteResetColumnNames(pTable);
 | 
						|
  sqliteFree(pTable->zName);
 | 
						|
  sqliteFree(pTable->zColAff);
 | 
						|
  sqlite3SelectDelete(pTable->pSelect);
 | 
						|
#ifndef SQLITE_OMIT_CHECK
 | 
						|
  sqlite3ExprDelete(pTable->pCheck);
 | 
						|
#endif
 | 
						|
  sqliteFree(pTable);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Unlink the given table from the hash tables and the delete the
 | 
						|
** table structure with all its indices and foreign keys.
 | 
						|
*/
 | 
						|
void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
 | 
						|
  Table *p;
 | 
						|
  FKey *pF1, *pF2;
 | 
						|
  Db *pDb;
 | 
						|
 | 
						|
  assert( db!=0 );
 | 
						|
  assert( iDb>=0 && iDb<db->nDb );
 | 
						|
  assert( zTabName && zTabName[0] );
 | 
						|
  pDb = &db->aDb[iDb];
 | 
						|
  p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
 | 
						|
  if( p ){
 | 
						|
#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
						|
    for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
 | 
						|
      int nTo = strlen(pF1->zTo) + 1;
 | 
						|
      pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
 | 
						|
      if( pF2==pF1 ){
 | 
						|
        sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
 | 
						|
      }else{
 | 
						|
        while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
 | 
						|
        if( pF2 ){
 | 
						|
          pF2->pNextTo = pF1->pNextTo;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    sqlite3DeleteTable(db, p);
 | 
						|
  }
 | 
						|
  db->flags |= SQLITE_InternChanges;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Given a token, return a string that consists of the text of that
 | 
						|
** token with any quotations removed.  Space to hold the returned string
 | 
						|
** is obtained from sqliteMalloc() and must be freed by the calling
 | 
						|
** function.
 | 
						|
**
 | 
						|
** Tokens are often just pointers into the original SQL text and so
 | 
						|
** are not \000 terminated and are not persistent.  The returned string
 | 
						|
** is \000 terminated and is persistent.
 | 
						|
*/
 | 
						|
char *sqlite3NameFromToken(Token *pName){
 | 
						|
  char *zName;
 | 
						|
  if( pName ){
 | 
						|
    zName = sqliteStrNDup((char*)pName->z, pName->n);
 | 
						|
    sqlite3Dequote(zName);
 | 
						|
  }else{
 | 
						|
    zName = 0;
 | 
						|
  }
 | 
						|
  return zName;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Open the sqlite_master table stored in database number iDb for
 | 
						|
** writing. The table is opened using cursor 0.
 | 
						|
*/
 | 
						|
void sqlite3OpenMasterTable(Parse *p, int iDb){
 | 
						|
  Vdbe *v = sqlite3GetVdbe(p);
 | 
						|
  sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
 | 
						|
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
						|
  sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
 | 
						|
  sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The token *pName contains the name of a database (either "main" or
 | 
						|
** "temp" or the name of an attached db). This routine returns the
 | 
						|
** index of the named database in db->aDb[], or -1 if the named db 
 | 
						|
** does not exist.
 | 
						|
*/
 | 
						|
int sqlite3FindDb(sqlite3 *db, Token *pName){
 | 
						|
  int i = -1;    /* Database number */
 | 
						|
  int n;         /* Number of characters in the name */
 | 
						|
  Db *pDb;       /* A database whose name space is being searched */
 | 
						|
  char *zName;   /* Name we are searching for */
 | 
						|
 | 
						|
  zName = sqlite3NameFromToken(pName);
 | 
						|
  if( zName ){
 | 
						|
    n = strlen(zName);
 | 
						|
    for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
 | 
						|
      if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 
 | 
						|
          0==sqlite3StrICmp(pDb->zName, zName) ){
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    sqliteFree(zName);
 | 
						|
  }
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
/* The table or view or trigger name is passed to this routine via tokens
 | 
						|
** pName1 and pName2. If the table name was fully qualified, for example:
 | 
						|
**
 | 
						|
** CREATE TABLE xxx.yyy (...);
 | 
						|
** 
 | 
						|
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
 | 
						|
** the table name is not fully qualified, i.e.:
 | 
						|
**
 | 
						|
** CREATE TABLE yyy(...);
 | 
						|
**
 | 
						|
** Then pName1 is set to "yyy" and pName2 is "".
 | 
						|
**
 | 
						|
** This routine sets the *ppUnqual pointer to point at the token (pName1 or
 | 
						|
** pName2) that stores the unqualified table name.  The index of the
 | 
						|
** database "xxx" is returned.
 | 
						|
*/
 | 
						|
int sqlite3TwoPartName(
 | 
						|
  Parse *pParse,      /* Parsing and code generating context */
 | 
						|
  Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
 | 
						|
  Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
 | 
						|
  Token **pUnqual     /* Write the unqualified object name here */
 | 
						|
){
 | 
						|
  int iDb;                    /* Database holding the object */
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
 | 
						|
  if( pName2 && pName2->n>0 ){
 | 
						|
    assert( !db->init.busy );
 | 
						|
    *pUnqual = pName2;
 | 
						|
    iDb = sqlite3FindDb(db, pName1);
 | 
						|
    if( iDb<0 ){
 | 
						|
      sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
 | 
						|
      pParse->nErr++;
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    assert( db->init.iDb==0 || db->init.busy );
 | 
						|
    iDb = db->init.iDb;
 | 
						|
    *pUnqual = pName1;
 | 
						|
  }
 | 
						|
  return iDb;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is used to check if the UTF-8 string zName is a legal
 | 
						|
** unqualified name for a new schema object (table, index, view or
 | 
						|
** trigger). All names are legal except those that begin with the string
 | 
						|
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
 | 
						|
** is reserved for internal use.
 | 
						|
*/
 | 
						|
int sqlite3CheckObjectName(Parse *pParse, const char *zName){
 | 
						|
  if( !pParse->db->init.busy && pParse->nested==0 
 | 
						|
          && (pParse->db->flags & SQLITE_WriteSchema)==0
 | 
						|
          && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
 | 
						|
    sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
 | 
						|
    return SQLITE_ERROR;
 | 
						|
  }
 | 
						|
  return SQLITE_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Begin constructing a new table representation in memory.  This is
 | 
						|
** the first of several action routines that get called in response
 | 
						|
** to a CREATE TABLE statement.  In particular, this routine is called
 | 
						|
** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
 | 
						|
** flag is true if the table should be stored in the auxiliary database
 | 
						|
** file instead of in the main database file.  This is normally the case
 | 
						|
** when the "TEMP" or "TEMPORARY" keyword occurs in between
 | 
						|
** CREATE and TABLE.
 | 
						|
**
 | 
						|
** The new table record is initialized and put in pParse->pNewTable.
 | 
						|
** As more of the CREATE TABLE statement is parsed, additional action
 | 
						|
** routines will be called to add more information to this record.
 | 
						|
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
 | 
						|
** is called to complete the construction of the new table record.
 | 
						|
*/
 | 
						|
void sqlite3StartTable(
 | 
						|
  Parse *pParse,   /* Parser context */
 | 
						|
  Token *pName1,   /* First part of the name of the table or view */
 | 
						|
  Token *pName2,   /* Second part of the name of the table or view */
 | 
						|
  int isTemp,      /* True if this is a TEMP table */
 | 
						|
  int isView,      /* True if this is a VIEW */
 | 
						|
  int noErr        /* Do nothing if table already exists */
 | 
						|
){
 | 
						|
  Table *pTable;
 | 
						|
  char *zName = 0; /* The name of the new table */
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
  Vdbe *v;
 | 
						|
  int iDb;         /* Database number to create the table in */
 | 
						|
  Token *pName;    /* Unqualified name of the table to create */
 | 
						|
 | 
						|
  /* The table or view name to create is passed to this routine via tokens
 | 
						|
  ** pName1 and pName2. If the table name was fully qualified, for example:
 | 
						|
  **
 | 
						|
  ** CREATE TABLE xxx.yyy (...);
 | 
						|
  ** 
 | 
						|
  ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
 | 
						|
  ** the table name is not fully qualified, i.e.:
 | 
						|
  **
 | 
						|
  ** CREATE TABLE yyy(...);
 | 
						|
  **
 | 
						|
  ** Then pName1 is set to "yyy" and pName2 is "".
 | 
						|
  **
 | 
						|
  ** The call below sets the pName pointer to point at the token (pName1 or
 | 
						|
  ** pName2) that stores the unqualified table name. The variable iDb is
 | 
						|
  ** set to the index of the database that the table or view is to be
 | 
						|
  ** created in.
 | 
						|
  */
 | 
						|
  iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | 
						|
  if( iDb<0 ) return;
 | 
						|
  if( !OMIT_TEMPDB && isTemp && iDb>1 ){
 | 
						|
    /* If creating a temp table, the name may not be qualified */
 | 
						|
    sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if( !OMIT_TEMPDB && isTemp ) iDb = 1;
 | 
						|
 | 
						|
  pParse->sNameToken = *pName;
 | 
						|
  zName = sqlite3NameFromToken(pName);
 | 
						|
  if( zName==0 ) return;
 | 
						|
  if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | 
						|
    goto begin_table_error;
 | 
						|
  }
 | 
						|
  if( db->init.iDb==1 ) isTemp = 1;
 | 
						|
#ifndef SQLITE_OMIT_AUTHORIZATION
 | 
						|
  assert( (isTemp & 1)==isTemp );
 | 
						|
  {
 | 
						|
    int code;
 | 
						|
    char *zDb = db->aDb[iDb].zName;
 | 
						|
    if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
 | 
						|
      goto begin_table_error;
 | 
						|
    }
 | 
						|
    if( isView ){
 | 
						|
      if( !OMIT_TEMPDB && isTemp ){
 | 
						|
        code = SQLITE_CREATE_TEMP_VIEW;
 | 
						|
      }else{
 | 
						|
        code = SQLITE_CREATE_VIEW;
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      if( !OMIT_TEMPDB && isTemp ){
 | 
						|
        code = SQLITE_CREATE_TEMP_TABLE;
 | 
						|
      }else{
 | 
						|
        code = SQLITE_CREATE_TABLE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
 | 
						|
      goto begin_table_error;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Make sure the new table name does not collide with an existing
 | 
						|
  ** index or table name in the same database.  Issue an error message if
 | 
						|
  ** it does.
 | 
						|
  */
 | 
						|
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | 
						|
    goto begin_table_error;
 | 
						|
  }
 | 
						|
  pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
 | 
						|
  if( pTable ){
 | 
						|
    if( !noErr ){
 | 
						|
      sqlite3ErrorMsg(pParse, "table %T already exists", pName);
 | 
						|
    }
 | 
						|
    goto begin_table_error;
 | 
						|
  }
 | 
						|
  if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
 | 
						|
    sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
 | 
						|
    goto begin_table_error;
 | 
						|
  }
 | 
						|
  pTable = sqliteMalloc( sizeof(Table) );
 | 
						|
  if( pTable==0 ){
 | 
						|
    pParse->rc = SQLITE_NOMEM;
 | 
						|
    pParse->nErr++;
 | 
						|
    goto begin_table_error;
 | 
						|
  }
 | 
						|
  pTable->zName = zName;
 | 
						|
  pTable->nCol = 0;
 | 
						|
  pTable->aCol = 0;
 | 
						|
  pTable->iPKey = -1;
 | 
						|
  pTable->pIndex = 0;
 | 
						|
  pTable->pSchema = db->aDb[iDb].pSchema;
 | 
						|
  pTable->nRef = 1;
 | 
						|
  if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
 | 
						|
  pParse->pNewTable = pTable;
 | 
						|
 | 
						|
  /* If this is the magic sqlite_sequence table used by autoincrement,
 | 
						|
  ** then record a pointer to this table in the main database structure
 | 
						|
  ** so that INSERT can find the table easily.
 | 
						|
  */
 | 
						|
#ifndef SQLITE_OMIT_AUTOINCREMENT
 | 
						|
  if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
 | 
						|
    pTable->pSchema->pSeqTab = pTable;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Begin generating the code that will insert the table record into
 | 
						|
  ** the SQLITE_MASTER table.  Note in particular that we must go ahead
 | 
						|
  ** and allocate the record number for the table entry now.  Before any
 | 
						|
  ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
 | 
						|
  ** indices to be created and the table record must come before the 
 | 
						|
  ** indices.  Hence, the record number for the table must be allocated
 | 
						|
  ** now.
 | 
						|
  */
 | 
						|
  if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
 | 
						|
    int lbl;
 | 
						|
    int fileFormat;
 | 
						|
    sqlite3BeginWriteOperation(pParse, 0, iDb);
 | 
						|
 | 
						|
    /* If the file format and encoding in the database have not been set, 
 | 
						|
    ** set them now.
 | 
						|
    */
 | 
						|
    sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);   /* file_format */
 | 
						|
    lbl = sqlite3VdbeMakeLabel(v);
 | 
						|
    sqlite3VdbeAddOp(v, OP_If, 0, lbl);
 | 
						|
    fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
 | 
						|
                  1 : SQLITE_DEFAULT_FILE_FORMAT;
 | 
						|
    sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
 | 
						|
    sqlite3VdbeResolveLabel(v, lbl);
 | 
						|
 | 
						|
    /* This just creates a place-holder record in the sqlite_master table.
 | 
						|
    ** The record created does not contain anything yet.  It will be replaced
 | 
						|
    ** by the real entry in code generated at sqlite3EndTable().
 | 
						|
    **
 | 
						|
    ** The rowid for the new entry is left on the top of the stack.
 | 
						|
    ** The rowid value is needed by the code that sqlite3EndTable will
 | 
						|
    ** generate.
 | 
						|
    */
 | 
						|
#ifndef SQLITE_OMIT_VIEW
 | 
						|
    if( isView ){
 | 
						|
      sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
 | 
						|
    }else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
      sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
 | 
						|
    }
 | 
						|
    sqlite3OpenMasterTable(pParse, iDb);
 | 
						|
    sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Insert, 0, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Close, 0, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Normal (non-error) return. */
 | 
						|
  return;
 | 
						|
 | 
						|
  /* If an error occurs, we jump here */
 | 
						|
begin_table_error:
 | 
						|
  sqliteFree(zName);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This macro is used to compare two strings in a case-insensitive manner.
 | 
						|
** It is slightly faster than calling sqlite3StrICmp() directly, but
 | 
						|
** produces larger code.
 | 
						|
**
 | 
						|
** WARNING: This macro is not compatible with the strcmp() family. It
 | 
						|
** returns true if the two strings are equal, otherwise false.
 | 
						|
*/
 | 
						|
#define STRICMP(x, y) (\
 | 
						|
sqlite3UpperToLower[*(unsigned char *)(x)]==   \
 | 
						|
sqlite3UpperToLower[*(unsigned char *)(y)]     \
 | 
						|
&& sqlite3StrICmp((x)+1,(y)+1)==0 )
 | 
						|
 | 
						|
/*
 | 
						|
** Add a new column to the table currently being constructed.
 | 
						|
**
 | 
						|
** The parser calls this routine once for each column declaration
 | 
						|
** in a CREATE TABLE statement.  sqlite3StartTable() gets called
 | 
						|
** first to get things going.  Then this routine is called for each
 | 
						|
** column.
 | 
						|
*/
 | 
						|
void sqlite3AddColumn(Parse *pParse, Token *pName){
 | 
						|
  Table *p;
 | 
						|
  int i;
 | 
						|
  char *z;
 | 
						|
  Column *pCol;
 | 
						|
  if( (p = pParse->pNewTable)==0 ) return;
 | 
						|
  z = sqlite3NameFromToken(pName);
 | 
						|
  if( z==0 ) return;
 | 
						|
  for(i=0; i<p->nCol; i++){
 | 
						|
    if( STRICMP(z, p->aCol[i].zName) ){
 | 
						|
      sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
 | 
						|
      sqliteFree(z);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( (p->nCol & 0x7)==0 ){
 | 
						|
    Column *aNew;
 | 
						|
    aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
 | 
						|
    if( aNew==0 ){
 | 
						|
      sqliteFree(z);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    p->aCol = aNew;
 | 
						|
  }
 | 
						|
  pCol = &p->aCol[p->nCol];
 | 
						|
  memset(pCol, 0, sizeof(p->aCol[0]));
 | 
						|
  pCol->zName = z;
 | 
						|
 
 | 
						|
  /* If there is no type specified, columns have the default affinity
 | 
						|
  ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
 | 
						|
  ** be called next to set pCol->affinity correctly.
 | 
						|
  */
 | 
						|
  pCol->affinity = SQLITE_AFF_NONE;
 | 
						|
  p->nCol++;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called by the parser while in the middle of
 | 
						|
** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
 | 
						|
** been seen on a column.  This routine sets the notNull flag on
 | 
						|
** the column currently under construction.
 | 
						|
*/
 | 
						|
void sqlite3AddNotNull(Parse *pParse, int onError){
 | 
						|
  Table *p;
 | 
						|
  int i;
 | 
						|
  if( (p = pParse->pNewTable)==0 ) return;
 | 
						|
  i = p->nCol-1;
 | 
						|
  if( i>=0 ) p->aCol[i].notNull = onError;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Scan the column type name zType (length nType) and return the
 | 
						|
** associated affinity type.
 | 
						|
**
 | 
						|
** This routine does a case-independent search of zType for the 
 | 
						|
** substrings in the following table. If one of the substrings is
 | 
						|
** found, the corresponding affinity is returned. If zType contains
 | 
						|
** more than one of the substrings, entries toward the top of 
 | 
						|
** the table take priority. For example, if zType is 'BLOBINT', 
 | 
						|
** SQLITE_AFF_INTEGER is returned.
 | 
						|
**
 | 
						|
** Substring     | Affinity
 | 
						|
** --------------------------------
 | 
						|
** 'INT'         | SQLITE_AFF_INTEGER
 | 
						|
** 'CHAR'        | SQLITE_AFF_TEXT
 | 
						|
** 'CLOB'        | SQLITE_AFF_TEXT
 | 
						|
** 'TEXT'        | SQLITE_AFF_TEXT
 | 
						|
** 'BLOB'        | SQLITE_AFF_NONE
 | 
						|
** 'REAL'        | SQLITE_AFF_REAL
 | 
						|
** 'FLOA'        | SQLITE_AFF_REAL
 | 
						|
** 'DOUB'        | SQLITE_AFF_REAL
 | 
						|
**
 | 
						|
** If none of the substrings in the above table are found,
 | 
						|
** SQLITE_AFF_NUMERIC is returned.
 | 
						|
*/
 | 
						|
char sqlite3AffinityType(const Token *pType){
 | 
						|
  u32 h = 0;
 | 
						|
  char aff = SQLITE_AFF_NUMERIC;
 | 
						|
  const unsigned char *zIn = pType->z;
 | 
						|
  const unsigned char *zEnd = &pType->z[pType->n];
 | 
						|
 | 
						|
  while( zIn!=zEnd ){
 | 
						|
    h = (h<<8) + sqlite3UpperToLower[*zIn];
 | 
						|
    zIn++;
 | 
						|
    if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
 | 
						|
      aff = SQLITE_AFF_TEXT; 
 | 
						|
    }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
 | 
						|
      aff = SQLITE_AFF_TEXT;
 | 
						|
    }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
 | 
						|
      aff = SQLITE_AFF_TEXT;
 | 
						|
    }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
 | 
						|
        && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
 | 
						|
      aff = SQLITE_AFF_NONE;
 | 
						|
#ifndef SQLITE_OMIT_FLOATING_POINT
 | 
						|
    }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
 | 
						|
        && aff==SQLITE_AFF_NUMERIC ){
 | 
						|
      aff = SQLITE_AFF_REAL;
 | 
						|
    }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
 | 
						|
        && aff==SQLITE_AFF_NUMERIC ){
 | 
						|
      aff = SQLITE_AFF_REAL;
 | 
						|
    }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
 | 
						|
        && aff==SQLITE_AFF_NUMERIC ){
 | 
						|
      aff = SQLITE_AFF_REAL;
 | 
						|
#endif
 | 
						|
    }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
 | 
						|
      aff = SQLITE_AFF_INTEGER;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return aff;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called by the parser while in the middle of
 | 
						|
** parsing a CREATE TABLE statement.  The pFirst token is the first
 | 
						|
** token in the sequence of tokens that describe the type of the
 | 
						|
** column currently under construction.   pLast is the last token
 | 
						|
** in the sequence.  Use this information to construct a string
 | 
						|
** that contains the typename of the column and store that string
 | 
						|
** in zType.
 | 
						|
*/ 
 | 
						|
void sqlite3AddColumnType(Parse *pParse, Token *pType){
 | 
						|
  Table *p;
 | 
						|
  int i;
 | 
						|
  Column *pCol;
 | 
						|
 | 
						|
  if( (p = pParse->pNewTable)==0 ) return;
 | 
						|
  i = p->nCol-1;
 | 
						|
  if( i<0 ) return;
 | 
						|
  pCol = &p->aCol[i];
 | 
						|
  sqliteFree(pCol->zType);
 | 
						|
  pCol->zType = sqlite3NameFromToken(pType);
 | 
						|
  pCol->affinity = sqlite3AffinityType(pType);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The expression is the default value for the most recently added column
 | 
						|
** of the table currently under construction.
 | 
						|
**
 | 
						|
** Default value expressions must be constant.  Raise an exception if this
 | 
						|
** is not the case.
 | 
						|
**
 | 
						|
** This routine is called by the parser while in the middle of
 | 
						|
** parsing a CREATE TABLE statement.
 | 
						|
*/
 | 
						|
void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
 | 
						|
  Table *p;
 | 
						|
  Column *pCol;
 | 
						|
  if( (p = pParse->pNewTable)!=0 ){
 | 
						|
    pCol = &(p->aCol[p->nCol-1]);
 | 
						|
    if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
 | 
						|
      sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
 | 
						|
          pCol->zName);
 | 
						|
    }else{
 | 
						|
      sqlite3ExprDelete(pCol->pDflt);
 | 
						|
      pCol->pDflt = sqlite3ExprDup(pExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  sqlite3ExprDelete(pExpr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Designate the PRIMARY KEY for the table.  pList is a list of names 
 | 
						|
** of columns that form the primary key.  If pList is NULL, then the
 | 
						|
** most recently added column of the table is the primary key.
 | 
						|
**
 | 
						|
** A table can have at most one primary key.  If the table already has
 | 
						|
** a primary key (and this is the second primary key) then create an
 | 
						|
** error.
 | 
						|
**
 | 
						|
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
 | 
						|
** then we will try to use that column as the rowid.  Set the Table.iPKey
 | 
						|
** field of the table under construction to be the index of the
 | 
						|
** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
 | 
						|
** no INTEGER PRIMARY KEY.
 | 
						|
**
 | 
						|
** If the key is not an INTEGER PRIMARY KEY, then create a unique
 | 
						|
** index for the key.  No index is created for INTEGER PRIMARY KEYs.
 | 
						|
*/
 | 
						|
void sqlite3AddPrimaryKey(
 | 
						|
  Parse *pParse,    /* Parsing context */
 | 
						|
  ExprList *pList,  /* List of field names to be indexed */
 | 
						|
  int onError,      /* What to do with a uniqueness conflict */
 | 
						|
  int autoInc,      /* True if the AUTOINCREMENT keyword is present */
 | 
						|
  int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
 | 
						|
){
 | 
						|
  Table *pTab = pParse->pNewTable;
 | 
						|
  char *zType = 0;
 | 
						|
  int iCol = -1, i;
 | 
						|
  if( pTab==0 ) goto primary_key_exit;
 | 
						|
  if( pTab->hasPrimKey ){
 | 
						|
    sqlite3ErrorMsg(pParse, 
 | 
						|
      "table \"%s\" has more than one primary key", pTab->zName);
 | 
						|
    goto primary_key_exit;
 | 
						|
  }
 | 
						|
  pTab->hasPrimKey = 1;
 | 
						|
  if( pList==0 ){
 | 
						|
    iCol = pTab->nCol - 1;
 | 
						|
    pTab->aCol[iCol].isPrimKey = 1;
 | 
						|
  }else{
 | 
						|
    for(i=0; i<pList->nExpr; i++){
 | 
						|
      for(iCol=0; iCol<pTab->nCol; iCol++){
 | 
						|
        if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( iCol<pTab->nCol ){
 | 
						|
        pTab->aCol[iCol].isPrimKey = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( pList->nExpr>1 ) iCol = -1;
 | 
						|
  }
 | 
						|
  if( iCol>=0 && iCol<pTab->nCol ){
 | 
						|
    zType = pTab->aCol[iCol].zType;
 | 
						|
  }
 | 
						|
  if( zType && sqlite3StrICmp(zType, "INTEGER")==0
 | 
						|
        && sortOrder==SQLITE_SO_ASC ){
 | 
						|
    pTab->iPKey = iCol;
 | 
						|
    pTab->keyConf = onError;
 | 
						|
    pTab->autoInc = autoInc;
 | 
						|
  }else if( autoInc ){
 | 
						|
#ifndef SQLITE_OMIT_AUTOINCREMENT
 | 
						|
    sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
 | 
						|
       "INTEGER PRIMARY KEY");
 | 
						|
#endif
 | 
						|
  }else{
 | 
						|
    sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
 | 
						|
    pList = 0;
 | 
						|
  }
 | 
						|
 | 
						|
primary_key_exit:
 | 
						|
  sqlite3ExprListDelete(pList);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add a new CHECK constraint to the table currently under construction.
 | 
						|
*/
 | 
						|
void sqlite3AddCheckConstraint(
 | 
						|
  Parse *pParse,    /* Parsing context */
 | 
						|
  Expr *pCheckExpr  /* The check expression */
 | 
						|
){
 | 
						|
#ifndef SQLITE_OMIT_CHECK
 | 
						|
  Table *pTab = pParse->pNewTable;
 | 
						|
  if( pTab ){
 | 
						|
    /* The CHECK expression must be duplicated so that tokens refer
 | 
						|
    ** to malloced space and not the (ephemeral) text of the CREATE TABLE
 | 
						|
    ** statement */
 | 
						|
    pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  sqlite3ExprDelete(pCheckExpr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Set the collation function of the most recently parsed table column
 | 
						|
** to the CollSeq given.
 | 
						|
*/
 | 
						|
void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
 | 
						|
  Table *p;
 | 
						|
  int i;
 | 
						|
 | 
						|
  if( (p = pParse->pNewTable)==0 ) return;
 | 
						|
  i = p->nCol-1;
 | 
						|
 | 
						|
  if( sqlite3LocateCollSeq(pParse, zType, nType) ){
 | 
						|
    Index *pIdx;
 | 
						|
    p->aCol[i].zColl = sqliteStrNDup(zType, nType);
 | 
						|
  
 | 
						|
    /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
 | 
						|
    ** then an index may have been created on this column before the
 | 
						|
    ** collation type was added. Correct this if it is the case.
 | 
						|
    */
 | 
						|
    for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
						|
      assert( pIdx->nColumn==1 );
 | 
						|
      if( pIdx->aiColumn[0]==i ){
 | 
						|
        pIdx->azColl[0] = p->aCol[i].zColl;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This function returns the collation sequence for database native text
 | 
						|
** encoding identified by the string zName, length nName.
 | 
						|
**
 | 
						|
** If the requested collation sequence is not available, or not available
 | 
						|
** in the database native encoding, the collation factory is invoked to
 | 
						|
** request it. If the collation factory does not supply such a sequence,
 | 
						|
** and the sequence is available in another text encoding, then that is
 | 
						|
** returned instead.
 | 
						|
**
 | 
						|
** If no versions of the requested collations sequence are available, or
 | 
						|
** another error occurs, NULL is returned and an error message written into
 | 
						|
** pParse.
 | 
						|
*/
 | 
						|
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
  u8 enc = ENC(db);
 | 
						|
  u8 initbusy = db->init.busy;
 | 
						|
  CollSeq *pColl;
 | 
						|
 | 
						|
  pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
 | 
						|
  if( !initbusy && (!pColl || !pColl->xCmp) ){
 | 
						|
    pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
 | 
						|
    if( !pColl ){
 | 
						|
      if( nName<0 ){
 | 
						|
        nName = strlen(zName);
 | 
						|
      }
 | 
						|
      sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
 | 
						|
      pColl = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return pColl;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code that will increment the schema cookie.
 | 
						|
**
 | 
						|
** The schema cookie is used to determine when the schema for the
 | 
						|
** database changes.  After each schema change, the cookie value
 | 
						|
** changes.  When a process first reads the schema it records the
 | 
						|
** cookie.  Thereafter, whenever it goes to access the database,
 | 
						|
** it checks the cookie to make sure the schema has not changed
 | 
						|
** since it was last read.
 | 
						|
**
 | 
						|
** This plan is not completely bullet-proof.  It is possible for
 | 
						|
** the schema to change multiple times and for the cookie to be
 | 
						|
** set back to prior value.  But schema changes are infrequent
 | 
						|
** and the probability of hitting the same cookie value is only
 | 
						|
** 1 chance in 2^32.  So we're safe enough.
 | 
						|
*/
 | 
						|
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
 | 
						|
  sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
 | 
						|
  sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Measure the number of characters needed to output the given
 | 
						|
** identifier.  The number returned includes any quotes used
 | 
						|
** but does not include the null terminator.
 | 
						|
**
 | 
						|
** The estimate is conservative.  It might be larger that what is
 | 
						|
** really needed.
 | 
						|
*/
 | 
						|
static int identLength(const char *z){
 | 
						|
  int n;
 | 
						|
  for(n=0; *z; n++, z++){
 | 
						|
    if( *z=='"' ){ n++; }
 | 
						|
  }
 | 
						|
  return n + 2;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Write an identifier onto the end of the given string.  Add
 | 
						|
** quote characters as needed.
 | 
						|
*/
 | 
						|
static void identPut(char *z, int *pIdx, char *zSignedIdent){
 | 
						|
  unsigned char *zIdent = (unsigned char*)zSignedIdent;
 | 
						|
  int i, j, needQuote;
 | 
						|
  i = *pIdx;
 | 
						|
  for(j=0; zIdent[j]; j++){
 | 
						|
    if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
 | 
						|
  }
 | 
						|
  needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
 | 
						|
                  || sqlite3KeywordCode(zIdent, j)!=TK_ID;
 | 
						|
  if( needQuote ) z[i++] = '"';
 | 
						|
  for(j=0; zIdent[j]; j++){
 | 
						|
    z[i++] = zIdent[j];
 | 
						|
    if( zIdent[j]=='"' ) z[i++] = '"';
 | 
						|
  }
 | 
						|
  if( needQuote ) z[i++] = '"';
 | 
						|
  z[i] = 0;
 | 
						|
  *pIdx = i;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate a CREATE TABLE statement appropriate for the given
 | 
						|
** table.  Memory to hold the text of the statement is obtained
 | 
						|
** from sqliteMalloc() and must be freed by the calling function.
 | 
						|
*/
 | 
						|
static char *createTableStmt(Table *p, int isTemp){
 | 
						|
  int i, k, n;
 | 
						|
  char *zStmt;
 | 
						|
  char *zSep, *zSep2, *zEnd, *z;
 | 
						|
  Column *pCol;
 | 
						|
  n = 0;
 | 
						|
  for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
 | 
						|
    n += identLength(pCol->zName);
 | 
						|
    z = pCol->zType;
 | 
						|
    if( z ){
 | 
						|
      n += (strlen(z) + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  n += identLength(p->zName);
 | 
						|
  if( n<50 ){
 | 
						|
    zSep = "";
 | 
						|
    zSep2 = ",";
 | 
						|
    zEnd = ")";
 | 
						|
  }else{
 | 
						|
    zSep = "\n  ";
 | 
						|
    zSep2 = ",\n  ";
 | 
						|
    zEnd = "\n)";
 | 
						|
  }
 | 
						|
  n += 35 + 6*p->nCol;
 | 
						|
  zStmt = sqliteMallocRaw( n );
 | 
						|
  if( zStmt==0 ) return 0;
 | 
						|
  strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
 | 
						|
  k = strlen(zStmt);
 | 
						|
  identPut(zStmt, &k, p->zName);
 | 
						|
  zStmt[k++] = '(';
 | 
						|
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
 | 
						|
    strcpy(&zStmt[k], zSep);
 | 
						|
    k += strlen(&zStmt[k]);
 | 
						|
    zSep = zSep2;
 | 
						|
    identPut(zStmt, &k, pCol->zName);
 | 
						|
    if( (z = pCol->zType)!=0 ){
 | 
						|
      zStmt[k++] = ' ';
 | 
						|
      strcpy(&zStmt[k], z);
 | 
						|
      k += strlen(z);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  strcpy(&zStmt[k], zEnd);
 | 
						|
  return zStmt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called to report the final ")" that terminates
 | 
						|
** a CREATE TABLE statement.
 | 
						|
**
 | 
						|
** The table structure that other action routines have been building
 | 
						|
** is added to the internal hash tables, assuming no errors have
 | 
						|
** occurred.
 | 
						|
**
 | 
						|
** An entry for the table is made in the master table on disk, unless
 | 
						|
** this is a temporary table or db->init.busy==1.  When db->init.busy==1
 | 
						|
** it means we are reading the sqlite_master table because we just
 | 
						|
** connected to the database or because the sqlite_master table has
 | 
						|
** recently changed, so the entry for this table already exists in
 | 
						|
** the sqlite_master table.  We do not want to create it again.
 | 
						|
**
 | 
						|
** If the pSelect argument is not NULL, it means that this routine
 | 
						|
** was called to create a table generated from a 
 | 
						|
** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
 | 
						|
** the new table will match the result set of the SELECT.
 | 
						|
*/
 | 
						|
void sqlite3EndTable(
 | 
						|
  Parse *pParse,          /* Parse context */
 | 
						|
  Token *pCons,           /* The ',' token after the last column defn. */
 | 
						|
  Token *pEnd,            /* The final ')' token in the CREATE TABLE */
 | 
						|
  Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
 | 
						|
){
 | 
						|
  Table *p;
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
  int iDb;
 | 
						|
 | 
						|
  if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3MallocFailed() ) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  p = pParse->pNewTable;
 | 
						|
  if( p==0 ) return;
 | 
						|
 | 
						|
  assert( !db->init.busy || !pSelect );
 | 
						|
 | 
						|
  iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_CHECK
 | 
						|
  /* Resolve names in all CHECK constraint expressions.
 | 
						|
  */
 | 
						|
  if( p->pCheck ){
 | 
						|
    SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
 | 
						|
    NameContext sNC;                /* Name context for pParse->pNewTable */
 | 
						|
 | 
						|
    memset(&sNC, 0, sizeof(sNC));
 | 
						|
    memset(&sSrc, 0, sizeof(sSrc));
 | 
						|
    sSrc.nSrc = 1;
 | 
						|
    sSrc.a[0].zName = p->zName;
 | 
						|
    sSrc.a[0].pTab = p;
 | 
						|
    sSrc.a[0].iCursor = -1;
 | 
						|
    sNC.pParse = pParse;
 | 
						|
    sNC.pSrcList = &sSrc;
 | 
						|
    sNC.isCheck = 1;
 | 
						|
    if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif /* !defined(SQLITE_OMIT_CHECK) */
 | 
						|
 | 
						|
  /* If the db->init.busy is 1 it means we are reading the SQL off the
 | 
						|
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
 | 
						|
  ** So do not write to the disk again.  Extract the root page number
 | 
						|
  ** for the table from the db->init.newTnum field.  (The page number
 | 
						|
  ** should have been put there by the sqliteOpenCb routine.)
 | 
						|
  */
 | 
						|
  if( db->init.busy ){
 | 
						|
    p->tnum = db->init.newTnum;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If not initializing, then create a record for the new table
 | 
						|
  ** in the SQLITE_MASTER table of the database.  The record number
 | 
						|
  ** for the new table entry should already be on the stack.
 | 
						|
  **
 | 
						|
  ** If this is a TEMPORARY table, write the entry into the auxiliary
 | 
						|
  ** file instead of into the main database file.
 | 
						|
  */
 | 
						|
  if( !db->init.busy ){
 | 
						|
    int n;
 | 
						|
    Vdbe *v;
 | 
						|
    char *zType;    /* "view" or "table" */
 | 
						|
    char *zType2;   /* "VIEW" or "TABLE" */
 | 
						|
    char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
 | 
						|
 | 
						|
    v = sqlite3GetVdbe(pParse);
 | 
						|
    if( v==0 ) return;
 | 
						|
 | 
						|
    sqlite3VdbeAddOp(v, OP_Close, 0, 0);
 | 
						|
 | 
						|
    /* Create the rootpage for the new table and push it onto the stack.
 | 
						|
    ** A view has no rootpage, so just push a zero onto the stack for
 | 
						|
    ** views.  Initialize zType at the same time.
 | 
						|
    */
 | 
						|
    if( p->pSelect==0 ){
 | 
						|
      /* A regular table */
 | 
						|
      zType = "table";
 | 
						|
      zType2 = "TABLE";
 | 
						|
#ifndef SQLITE_OMIT_VIEW
 | 
						|
    }else{
 | 
						|
      /* A view */
 | 
						|
      zType = "view";
 | 
						|
      zType2 = "VIEW";
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
 | 
						|
    ** statement to populate the new table. The root-page number for the
 | 
						|
    ** new table is on the top of the vdbe stack.
 | 
						|
    **
 | 
						|
    ** Once the SELECT has been coded by sqlite3Select(), it is in a
 | 
						|
    ** suitable state to query for the column names and types to be used
 | 
						|
    ** by the new table.
 | 
						|
    **
 | 
						|
    ** A shared-cache write-lock is not required to write to the new table,
 | 
						|
    ** as a schema-lock must have already been obtained to create it. Since
 | 
						|
    ** a schema-lock excludes all other database users, the write-lock would
 | 
						|
    ** be redundant.
 | 
						|
    */
 | 
						|
    if( pSelect ){
 | 
						|
      Table *pSelTab;
 | 
						|
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | 
						|
      sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
						|
      sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
 | 
						|
      pParse->nTab = 2;
 | 
						|
      sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
 | 
						|
      sqlite3VdbeAddOp(v, OP_Close, 1, 0);
 | 
						|
      if( pParse->nErr==0 ){
 | 
						|
        pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
 | 
						|
        if( pSelTab==0 ) return;
 | 
						|
        assert( p->aCol==0 );
 | 
						|
        p->nCol = pSelTab->nCol;
 | 
						|
        p->aCol = pSelTab->aCol;
 | 
						|
        pSelTab->nCol = 0;
 | 
						|
        pSelTab->aCol = 0;
 | 
						|
        sqlite3DeleteTable(0, pSelTab);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compute the complete text of the CREATE statement */
 | 
						|
    if( pSelect ){
 | 
						|
      zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema);
 | 
						|
    }else{
 | 
						|
      n = pEnd->z - pParse->sNameToken.z + 1;
 | 
						|
      zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
 | 
						|
    }
 | 
						|
 | 
						|
    /* A slot for the record has already been allocated in the 
 | 
						|
    ** SQLITE_MASTER table.  We just need to update that slot with all
 | 
						|
    ** the information we've collected.  The rowid for the preallocated
 | 
						|
    ** slot is the 2nd item on the stack.  The top of the stack is the
 | 
						|
    ** root page for the new table (or a 0 if this is a view).
 | 
						|
    */
 | 
						|
    sqlite3NestedParse(pParse,
 | 
						|
      "UPDATE %Q.%s "
 | 
						|
         "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
 | 
						|
       "WHERE rowid=#1",
 | 
						|
      db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | 
						|
      zType,
 | 
						|
      p->zName,
 | 
						|
      p->zName,
 | 
						|
      zStmt
 | 
						|
    );
 | 
						|
    sqliteFree(zStmt);
 | 
						|
    sqlite3ChangeCookie(db, v, iDb);
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_AUTOINCREMENT
 | 
						|
    /* Check to see if we need to create an sqlite_sequence table for
 | 
						|
    ** keeping track of autoincrement keys.
 | 
						|
    */
 | 
						|
    if( p->autoInc ){
 | 
						|
      Db *pDb = &db->aDb[iDb];
 | 
						|
      if( pDb->pSchema->pSeqTab==0 ){
 | 
						|
        sqlite3NestedParse(pParse,
 | 
						|
          "CREATE TABLE %Q.sqlite_sequence(name,seq)",
 | 
						|
          pDb->zName
 | 
						|
        );
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Reparse everything to update our internal data structures */
 | 
						|
    sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
 | 
						|
        sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /* Add the table to the in-memory representation of the database.
 | 
						|
  */
 | 
						|
  if( db->init.busy && pParse->nErr==0 ){
 | 
						|
    Table *pOld;
 | 
						|
    FKey *pFKey; 
 | 
						|
    Schema *pSchema = p->pSchema;
 | 
						|
    pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
 | 
						|
    if( pOld ){
 | 
						|
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
 | 
						|
      return;
 | 
						|
    }
 | 
						|
#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
						|
    for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
 | 
						|
      int nTo = strlen(pFKey->zTo) + 1;
 | 
						|
      pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
 | 
						|
      sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    pParse->pNewTable = 0;
 | 
						|
    db->nTable++;
 | 
						|
    db->flags |= SQLITE_InternChanges;
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_ALTERTABLE
 | 
						|
    if( !p->pSelect ){
 | 
						|
      const char *zName = (const char *)pParse->sNameToken.z;
 | 
						|
      int nName;
 | 
						|
      assert( !pSelect && pCons && pEnd );
 | 
						|
      if( pCons->z==0 ){
 | 
						|
        pCons = pEnd;
 | 
						|
      }
 | 
						|
      nName = (const char *)pCons->z - zName;
 | 
						|
      p->addColOffset = 13 + sqlite3utf8CharLen(zName, nName);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_VIEW
 | 
						|
/*
 | 
						|
** The parser calls this routine in order to create a new VIEW
 | 
						|
*/
 | 
						|
void sqlite3CreateView(
 | 
						|
  Parse *pParse,     /* The parsing context */
 | 
						|
  Token *pBegin,     /* The CREATE token that begins the statement */
 | 
						|
  Token *pName1,     /* The token that holds the name of the view */
 | 
						|
  Token *pName2,     /* The token that holds the name of the view */
 | 
						|
  Select *pSelect,   /* A SELECT statement that will become the new view */
 | 
						|
  int isTemp         /* TRUE for a TEMPORARY view */
 | 
						|
){
 | 
						|
  Table *p;
 | 
						|
  int n;
 | 
						|
  const unsigned char *z;
 | 
						|
  Token sEnd;
 | 
						|
  DbFixer sFix;
 | 
						|
  Token *pName;
 | 
						|
  int iDb;
 | 
						|
 | 
						|
  if( pParse->nVar>0 ){
 | 
						|
    sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
 | 
						|
    sqlite3SelectDelete(pSelect);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0);
 | 
						|
  p = pParse->pNewTable;
 | 
						|
  if( p==0 || pParse->nErr ){
 | 
						|
    sqlite3SelectDelete(pSelect);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | 
						|
  iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
 | 
						|
  if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
 | 
						|
    && sqlite3FixSelect(&sFix, pSelect)
 | 
						|
  ){
 | 
						|
    sqlite3SelectDelete(pSelect);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Make a copy of the entire SELECT statement that defines the view.
 | 
						|
  ** This will force all the Expr.token.z values to be dynamically
 | 
						|
  ** allocated rather than point to the input string - which means that
 | 
						|
  ** they will persist after the current sqlite3_exec() call returns.
 | 
						|
  */
 | 
						|
  p->pSelect = sqlite3SelectDup(pSelect);
 | 
						|
  sqlite3SelectDelete(pSelect);
 | 
						|
  if( sqlite3MallocFailed() ){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if( !pParse->db->init.busy ){
 | 
						|
    sqlite3ViewGetColumnNames(pParse, p);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
 | 
						|
  ** the end.
 | 
						|
  */
 | 
						|
  sEnd = pParse->sLastToken;
 | 
						|
  if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
 | 
						|
    sEnd.z += sEnd.n;
 | 
						|
  }
 | 
						|
  sEnd.n = 0;
 | 
						|
  n = sEnd.z - pBegin->z;
 | 
						|
  z = (const unsigned char*)pBegin->z;
 | 
						|
  while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
 | 
						|
  sEnd.z = &z[n-1];
 | 
						|
  sEnd.n = 1;
 | 
						|
 | 
						|
  /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
 | 
						|
  sqlite3EndTable(pParse, 0, &sEnd, 0);
 | 
						|
  return;
 | 
						|
}
 | 
						|
#endif /* SQLITE_OMIT_VIEW */
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_VIEW
 | 
						|
/*
 | 
						|
** The Table structure pTable is really a VIEW.  Fill in the names of
 | 
						|
** the columns of the view in the pTable structure.  Return the number
 | 
						|
** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
 | 
						|
*/
 | 
						|
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
 | 
						|
  Table *pSelTab;   /* A fake table from which we get the result set */
 | 
						|
  Select *pSel;     /* Copy of the SELECT that implements the view */
 | 
						|
  int nErr = 0;     /* Number of errors encountered */
 | 
						|
  int n;            /* Temporarily holds the number of cursors assigned */
 | 
						|
 | 
						|
  assert( pTable );
 | 
						|
 | 
						|
  /* A positive nCol means the columns names for this view are
 | 
						|
  ** already known.
 | 
						|
  */
 | 
						|
  if( pTable->nCol>0 ) return 0;
 | 
						|
 | 
						|
  /* A negative nCol is a special marker meaning that we are currently
 | 
						|
  ** trying to compute the column names.  If we enter this routine with
 | 
						|
  ** a negative nCol, it means two or more views form a loop, like this:
 | 
						|
  **
 | 
						|
  **     CREATE VIEW one AS SELECT * FROM two;
 | 
						|
  **     CREATE VIEW two AS SELECT * FROM one;
 | 
						|
  **
 | 
						|
  ** Actually, this error is caught previously and so the following test
 | 
						|
  ** should always fail.  But we will leave it in place just to be safe.
 | 
						|
  */
 | 
						|
  if( pTable->nCol<0 ){
 | 
						|
    sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  assert( pTable->nCol>=0 );
 | 
						|
 | 
						|
  /* If we get this far, it means we need to compute the table names.
 | 
						|
  ** Note that the call to sqlite3ResultSetOfSelect() will expand any
 | 
						|
  ** "*" elements in the results set of the view and will assign cursors
 | 
						|
  ** to the elements of the FROM clause.  But we do not want these changes
 | 
						|
  ** to be permanent.  So the computation is done on a copy of the SELECT
 | 
						|
  ** statement that defines the view.
 | 
						|
  */
 | 
						|
  assert( pTable->pSelect );
 | 
						|
  pSel = sqlite3SelectDup(pTable->pSelect);
 | 
						|
  if( pSel ){
 | 
						|
    n = pParse->nTab;
 | 
						|
    sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
 | 
						|
    pTable->nCol = -1;
 | 
						|
    pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
 | 
						|
    pParse->nTab = n;
 | 
						|
    if( pSelTab ){
 | 
						|
      assert( pTable->aCol==0 );
 | 
						|
      pTable->nCol = pSelTab->nCol;
 | 
						|
      pTable->aCol = pSelTab->aCol;
 | 
						|
      pSelTab->nCol = 0;
 | 
						|
      pSelTab->aCol = 0;
 | 
						|
      sqlite3DeleteTable(0, pSelTab);
 | 
						|
      pTable->pSchema->flags |= DB_UnresetViews;
 | 
						|
    }else{
 | 
						|
      pTable->nCol = 0;
 | 
						|
      nErr++;
 | 
						|
    }
 | 
						|
    sqlite3SelectDelete(pSel);
 | 
						|
  } else {
 | 
						|
    nErr++;
 | 
						|
  }
 | 
						|
  return nErr;  
 | 
						|
}
 | 
						|
#endif /* SQLITE_OMIT_VIEW */
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_VIEW
 | 
						|
/*
 | 
						|
** Clear the column names from every VIEW in database idx.
 | 
						|
*/
 | 
						|
static void sqliteViewResetAll(sqlite3 *db, int idx){
 | 
						|
  HashElem *i;
 | 
						|
  if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
 | 
						|
  for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
 | 
						|
    Table *pTab = sqliteHashData(i);
 | 
						|
    if( pTab->pSelect ){
 | 
						|
      sqliteResetColumnNames(pTab);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DbClearProperty(db, idx, DB_UnresetViews);
 | 
						|
}
 | 
						|
#else
 | 
						|
# define sqliteViewResetAll(A,B)
 | 
						|
#endif /* SQLITE_OMIT_VIEW */
 | 
						|
 | 
						|
/*
 | 
						|
** This function is called by the VDBE to adjust the internal schema
 | 
						|
** used by SQLite when the btree layer moves a table root page. The
 | 
						|
** root-page of a table or index in database iDb has changed from iFrom
 | 
						|
** to iTo.
 | 
						|
**
 | 
						|
** Ticket #1728:  The symbol table might still contain information
 | 
						|
** on tables and/or indices that are the process of being deleted.
 | 
						|
** If you are unlucky, one of those deleted indices or tables might
 | 
						|
** have the same rootpage number as the real table or index that is
 | 
						|
** being moved.  So we cannot stop searching after the first match 
 | 
						|
** because the first match might be for one of the deleted indices
 | 
						|
** or tables and not the table/index that is actually being moved.
 | 
						|
** We must continue looping until all tables and indices with
 | 
						|
** rootpage==iFrom have been converted to have a rootpage of iTo
 | 
						|
** in order to be certain that we got the right one.
 | 
						|
*/
 | 
						|
#ifndef SQLITE_OMIT_AUTOVACUUM
 | 
						|
void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
 | 
						|
  HashElem *pElem;
 | 
						|
  Hash *pHash;
 | 
						|
 | 
						|
  pHash = &pDb->pSchema->tblHash;
 | 
						|
  for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
 | 
						|
    Table *pTab = sqliteHashData(pElem);
 | 
						|
    if( pTab->tnum==iFrom ){
 | 
						|
      pTab->tnum = iTo;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pHash = &pDb->pSchema->idxHash;
 | 
						|
  for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
 | 
						|
    Index *pIdx = sqliteHashData(pElem);
 | 
						|
    if( pIdx->tnum==iFrom ){
 | 
						|
      pIdx->tnum = iTo;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Write code to erase the table with root-page iTable from database iDb.
 | 
						|
** Also write code to modify the sqlite_master table and internal schema
 | 
						|
** if a root-page of another table is moved by the btree-layer whilst
 | 
						|
** erasing iTable (this can happen with an auto-vacuum database).
 | 
						|
*/ 
 | 
						|
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
 | 
						|
  Vdbe *v = sqlite3GetVdbe(pParse);
 | 
						|
  sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
 | 
						|
#ifndef SQLITE_OMIT_AUTOVACUUM
 | 
						|
  /* OP_Destroy pushes an integer onto the stack. If this integer
 | 
						|
  ** is non-zero, then it is the root page number of a table moved to
 | 
						|
  ** location iTable. The following code modifies the sqlite_master table to
 | 
						|
  ** reflect this.
 | 
						|
  **
 | 
						|
  ** The "#0" in the SQL is a special constant that means whatever value
 | 
						|
  ** is on the top of the stack.  See sqlite3RegisterExpr().
 | 
						|
  */
 | 
						|
  sqlite3NestedParse(pParse, 
 | 
						|
     "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
 | 
						|
     pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Write VDBE code to erase table pTab and all associated indices on disk.
 | 
						|
** Code to update the sqlite_master tables and internal schema definitions
 | 
						|
** in case a root-page belonging to another table is moved by the btree layer
 | 
						|
** is also added (this can happen with an auto-vacuum database).
 | 
						|
*/
 | 
						|
static void destroyTable(Parse *pParse, Table *pTab){
 | 
						|
#ifdef SQLITE_OMIT_AUTOVACUUM
 | 
						|
  Index *pIdx;
 | 
						|
  int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | 
						|
  destroyRootPage(pParse, pTab->tnum, iDb);
 | 
						|
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
						|
    destroyRootPage(pParse, pIdx->tnum, iDb);
 | 
						|
  }
 | 
						|
#else
 | 
						|
  /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
 | 
						|
  ** is not defined), then it is important to call OP_Destroy on the
 | 
						|
  ** table and index root-pages in order, starting with the numerically 
 | 
						|
  ** largest root-page number. This guarantees that none of the root-pages
 | 
						|
  ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
 | 
						|
  ** following were coded:
 | 
						|
  **
 | 
						|
  ** OP_Destroy 4 0
 | 
						|
  ** ...
 | 
						|
  ** OP_Destroy 5 0
 | 
						|
  **
 | 
						|
  ** and root page 5 happened to be the largest root-page number in the
 | 
						|
  ** database, then root page 5 would be moved to page 4 by the 
 | 
						|
  ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
 | 
						|
  ** a free-list page.
 | 
						|
  */
 | 
						|
  int iTab = pTab->tnum;
 | 
						|
  int iDestroyed = 0;
 | 
						|
 | 
						|
  while( 1 ){
 | 
						|
    Index *pIdx;
 | 
						|
    int iLargest = 0;
 | 
						|
 | 
						|
    if( iDestroyed==0 || iTab<iDestroyed ){
 | 
						|
      iLargest = iTab;
 | 
						|
    }
 | 
						|
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
						|
      int iIdx = pIdx->tnum;
 | 
						|
      assert( pIdx->pSchema==pTab->pSchema );
 | 
						|
      if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
 | 
						|
        iLargest = iIdx;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( iLargest==0 ){
 | 
						|
      return;
 | 
						|
    }else{
 | 
						|
      int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | 
						|
      destroyRootPage(pParse, iLargest, iDb);
 | 
						|
      iDestroyed = iLargest;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called to do the work of a DROP TABLE statement.
 | 
						|
** pName is the name of the table to be dropped.
 | 
						|
*/
 | 
						|
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
 | 
						|
  Table *pTab;
 | 
						|
  Vdbe *v;
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
  int iDb;
 | 
						|
 | 
						|
  if( pParse->nErr || sqlite3MallocFailed() ){
 | 
						|
    goto exit_drop_table;
 | 
						|
  }
 | 
						|
  assert( pName->nSrc==1 );
 | 
						|
  pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
 | 
						|
 | 
						|
  if( pTab==0 ){
 | 
						|
    if( noErr ){
 | 
						|
      sqlite3ErrorClear(pParse);
 | 
						|
    }
 | 
						|
    goto exit_drop_table;
 | 
						|
  }
 | 
						|
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | 
						|
  assert( iDb>=0 && iDb<db->nDb );
 | 
						|
#ifndef SQLITE_OMIT_AUTHORIZATION
 | 
						|
  {
 | 
						|
    int code;
 | 
						|
    const char *zTab = SCHEMA_TABLE(iDb);
 | 
						|
    const char *zDb = db->aDb[iDb].zName;
 | 
						|
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
 | 
						|
      goto exit_drop_table;
 | 
						|
    }
 | 
						|
    if( isView ){
 | 
						|
      if( !OMIT_TEMPDB && iDb==1 ){
 | 
						|
        code = SQLITE_DROP_TEMP_VIEW;
 | 
						|
      }else{
 | 
						|
        code = SQLITE_DROP_VIEW;
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      if( !OMIT_TEMPDB && iDb==1 ){
 | 
						|
        code = SQLITE_DROP_TEMP_TABLE;
 | 
						|
      }else{
 | 
						|
        code = SQLITE_DROP_TABLE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( sqlite3AuthCheck(pParse, code, pTab->zName, 0, zDb) ){
 | 
						|
      goto exit_drop_table;
 | 
						|
    }
 | 
						|
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
 | 
						|
      goto exit_drop_table;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
 | 
						|
    sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
 | 
						|
    goto exit_drop_table;
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_VIEW
 | 
						|
  /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
 | 
						|
  ** on a table.
 | 
						|
  */
 | 
						|
  if( isView && pTab->pSelect==0 ){
 | 
						|
    sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
 | 
						|
    goto exit_drop_table;
 | 
						|
  }
 | 
						|
  if( !isView && pTab->pSelect ){
 | 
						|
    sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
 | 
						|
    goto exit_drop_table;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Generate code to remove the table from the master table
 | 
						|
  ** on disk.
 | 
						|
  */
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v ){
 | 
						|
    Trigger *pTrigger;
 | 
						|
    Db *pDb = &db->aDb[iDb];
 | 
						|
    sqlite3BeginWriteOperation(pParse, 0, iDb);
 | 
						|
 | 
						|
    /* Drop all triggers associated with the table being dropped. Code
 | 
						|
    ** is generated to remove entries from sqlite_master and/or
 | 
						|
    ** sqlite_temp_master if required.
 | 
						|
    */
 | 
						|
    pTrigger = pTab->pTrigger;
 | 
						|
    while( pTrigger ){
 | 
						|
      assert( pTrigger->pSchema==pTab->pSchema || 
 | 
						|
          pTrigger->pSchema==db->aDb[1].pSchema );
 | 
						|
      sqlite3DropTriggerPtr(pParse, pTrigger);
 | 
						|
      pTrigger = pTrigger->pNext;
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_AUTOINCREMENT
 | 
						|
    /* Remove any entries of the sqlite_sequence table associated with
 | 
						|
    ** the table being dropped. This is done before the table is dropped
 | 
						|
    ** at the btree level, in case the sqlite_sequence table needs to
 | 
						|
    ** move as a result of the drop (can happen in auto-vacuum mode).
 | 
						|
    */
 | 
						|
    if( pTab->autoInc ){
 | 
						|
      sqlite3NestedParse(pParse,
 | 
						|
        "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
 | 
						|
        pDb->zName, pTab->zName
 | 
						|
      );
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Drop all SQLITE_MASTER table and index entries that refer to the
 | 
						|
    ** table. The program name loops through the master table and deletes
 | 
						|
    ** every row that refers to a table of the same name as the one being
 | 
						|
    ** dropped. Triggers are handled seperately because a trigger can be
 | 
						|
    ** created in the temp database that refers to a table in another
 | 
						|
    ** database.
 | 
						|
    */
 | 
						|
    sqlite3NestedParse(pParse, 
 | 
						|
        "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
 | 
						|
        pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
 | 
						|
    if( !isView ){
 | 
						|
      destroyTable(pParse, pTab);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Remove the table entry from SQLite's internal schema and modify
 | 
						|
    ** the schema cookie.
 | 
						|
    */
 | 
						|
    sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
 | 
						|
    sqlite3ChangeCookie(db, v, iDb);
 | 
						|
  }
 | 
						|
  sqliteViewResetAll(db, iDb);
 | 
						|
 | 
						|
exit_drop_table:
 | 
						|
  sqlite3SrcListDelete(pName);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called to create a new foreign key on the table
 | 
						|
** currently under construction.  pFromCol determines which columns
 | 
						|
** in the current table point to the foreign key.  If pFromCol==0 then
 | 
						|
** connect the key to the last column inserted.  pTo is the name of
 | 
						|
** the table referred to.  pToCol is a list of tables in the other
 | 
						|
** pTo table that the foreign key points to.  flags contains all
 | 
						|
** information about the conflict resolution algorithms specified
 | 
						|
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
 | 
						|
**
 | 
						|
** An FKey structure is created and added to the table currently
 | 
						|
** under construction in the pParse->pNewTable field.  The new FKey
 | 
						|
** is not linked into db->aFKey at this point - that does not happen
 | 
						|
** until sqlite3EndTable().
 | 
						|
**
 | 
						|
** The foreign key is set for IMMEDIATE processing.  A subsequent call
 | 
						|
** to sqlite3DeferForeignKey() might change this to DEFERRED.
 | 
						|
*/
 | 
						|
void sqlite3CreateForeignKey(
 | 
						|
  Parse *pParse,       /* Parsing context */
 | 
						|
  ExprList *pFromCol,  /* Columns in this table that point to other table */
 | 
						|
  Token *pTo,          /* Name of the other table */
 | 
						|
  ExprList *pToCol,    /* Columns in the other table */
 | 
						|
  int flags            /* Conflict resolution algorithms. */
 | 
						|
){
 | 
						|
#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
						|
  FKey *pFKey = 0;
 | 
						|
  Table *p = pParse->pNewTable;
 | 
						|
  int nByte;
 | 
						|
  int i;
 | 
						|
  int nCol;
 | 
						|
  char *z;
 | 
						|
 | 
						|
  assert( pTo!=0 );
 | 
						|
  if( p==0 || pParse->nErr ) goto fk_end;
 | 
						|
  if( pFromCol==0 ){
 | 
						|
    int iCol = p->nCol-1;
 | 
						|
    if( iCol<0 ) goto fk_end;
 | 
						|
    if( pToCol && pToCol->nExpr!=1 ){
 | 
						|
      sqlite3ErrorMsg(pParse, "foreign key on %s"
 | 
						|
         " should reference only one column of table %T",
 | 
						|
         p->aCol[iCol].zName, pTo);
 | 
						|
      goto fk_end;
 | 
						|
    }
 | 
						|
    nCol = 1;
 | 
						|
  }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
 | 
						|
    sqlite3ErrorMsg(pParse,
 | 
						|
        "number of columns in foreign key does not match the number of "
 | 
						|
        "columns in the referenced table");
 | 
						|
    goto fk_end;
 | 
						|
  }else{
 | 
						|
    nCol = pFromCol->nExpr;
 | 
						|
  }
 | 
						|
  nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
 | 
						|
  if( pToCol ){
 | 
						|
    for(i=0; i<pToCol->nExpr; i++){
 | 
						|
      nByte += strlen(pToCol->a[i].zName) + 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pFKey = sqliteMalloc( nByte );
 | 
						|
  if( pFKey==0 ) goto fk_end;
 | 
						|
  pFKey->pFrom = p;
 | 
						|
  pFKey->pNextFrom = p->pFKey;
 | 
						|
  z = (char*)&pFKey[1];
 | 
						|
  pFKey->aCol = (struct sColMap*)z;
 | 
						|
  z += sizeof(struct sColMap)*nCol;
 | 
						|
  pFKey->zTo = z;
 | 
						|
  memcpy(z, pTo->z, pTo->n);
 | 
						|
  z[pTo->n] = 0;
 | 
						|
  z += pTo->n+1;
 | 
						|
  pFKey->pNextTo = 0;
 | 
						|
  pFKey->nCol = nCol;
 | 
						|
  if( pFromCol==0 ){
 | 
						|
    pFKey->aCol[0].iFrom = p->nCol-1;
 | 
						|
  }else{
 | 
						|
    for(i=0; i<nCol; i++){
 | 
						|
      int j;
 | 
						|
      for(j=0; j<p->nCol; j++){
 | 
						|
        if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
 | 
						|
          pFKey->aCol[i].iFrom = j;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( j>=p->nCol ){
 | 
						|
        sqlite3ErrorMsg(pParse, 
 | 
						|
          "unknown column \"%s\" in foreign key definition", 
 | 
						|
          pFromCol->a[i].zName);
 | 
						|
        goto fk_end;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pToCol ){
 | 
						|
    for(i=0; i<nCol; i++){
 | 
						|
      int n = strlen(pToCol->a[i].zName);
 | 
						|
      pFKey->aCol[i].zCol = z;
 | 
						|
      memcpy(z, pToCol->a[i].zName, n);
 | 
						|
      z[n] = 0;
 | 
						|
      z += n+1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pFKey->isDeferred = 0;
 | 
						|
  pFKey->deleteConf = flags & 0xff;
 | 
						|
  pFKey->updateConf = (flags >> 8 ) & 0xff;
 | 
						|
  pFKey->insertConf = (flags >> 16 ) & 0xff;
 | 
						|
 | 
						|
  /* Link the foreign key to the table as the last step.
 | 
						|
  */
 | 
						|
  p->pFKey = pFKey;
 | 
						|
  pFKey = 0;
 | 
						|
 | 
						|
fk_end:
 | 
						|
  sqliteFree(pFKey);
 | 
						|
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
 | 
						|
  sqlite3ExprListDelete(pFromCol);
 | 
						|
  sqlite3ExprListDelete(pToCol);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
 | 
						|
** clause is seen as part of a foreign key definition.  The isDeferred
 | 
						|
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
 | 
						|
** The behavior of the most recently created foreign key is adjusted
 | 
						|
** accordingly.
 | 
						|
*/
 | 
						|
void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
 | 
						|
#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
						|
  Table *pTab;
 | 
						|
  FKey *pFKey;
 | 
						|
  if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
 | 
						|
  pFKey->isDeferred = isDeferred;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code that will erase and refill index *pIdx.  This is
 | 
						|
** used to initialize a newly created index or to recompute the
 | 
						|
** content of an index in response to a REINDEX command.
 | 
						|
**
 | 
						|
** if memRootPage is not negative, it means that the index is newly
 | 
						|
** created.  The memory cell specified by memRootPage contains the
 | 
						|
** root page number of the index.  If memRootPage is negative, then
 | 
						|
** the index already exists and must be cleared before being refilled and
 | 
						|
** the root page number of the index is taken from pIndex->tnum.
 | 
						|
*/
 | 
						|
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
 | 
						|
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
 | 
						|
  int iTab = pParse->nTab;       /* Btree cursor used for pTab */
 | 
						|
  int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
 | 
						|
  int addr1;                     /* Address of top of loop */
 | 
						|
  int tnum;                      /* Root page of index */
 | 
						|
  Vdbe *v;                       /* Generate code into this virtual machine */
 | 
						|
  KeyInfo *pKey;                 /* KeyInfo for index */
 | 
						|
  int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema);
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_AUTHORIZATION
 | 
						|
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
 | 
						|
      pParse->db->aDb[iDb].zName ) ){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Require a write-lock on the table to perform this operation */
 | 
						|
  sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
 | 
						|
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v==0 ) return;
 | 
						|
  if( memRootPage>=0 ){
 | 
						|
    sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
 | 
						|
    tnum = 0;
 | 
						|
  }else{
 | 
						|
    tnum = pIndex->tnum;
 | 
						|
    sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
 | 
						|
  }
 | 
						|
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
						|
  pKey = sqlite3IndexKeyinfo(pParse, pIndex);
 | 
						|
  sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);
 | 
						|
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
 | 
						|
  addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
 | 
						|
  sqlite3GenerateIndexKey(v, pIndex, iTab);
 | 
						|
  if( pIndex->onError!=OE_None ){
 | 
						|
    int curaddr = sqlite3VdbeCurrentAddr(v);
 | 
						|
    int addr2 = curaddr+4;
 | 
						|
    sqlite3VdbeChangeP2(v, curaddr-1, addr2);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
 | 
						|
    sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
 | 
						|
                    "indexed columns are not unique", P3_STATIC);
 | 
						|
    assert( addr2==sqlite3VdbeCurrentAddr(v) );
 | 
						|
  }
 | 
						|
  sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
 | 
						|
  sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
 | 
						|
  sqlite3VdbeJumpHere(v, addr1);
 | 
						|
  sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
 | 
						|
  sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
 | 
						|
** and pTblList is the name of the table that is to be indexed.  Both will 
 | 
						|
** be NULL for a primary key or an index that is created to satisfy a
 | 
						|
** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
 | 
						|
** as the table to be indexed.  pParse->pNewTable is a table that is
 | 
						|
** currently being constructed by a CREATE TABLE statement.
 | 
						|
**
 | 
						|
** pList is a list of columns to be indexed.  pList will be NULL if this
 | 
						|
** is a primary key or unique-constraint on the most recent column added
 | 
						|
** to the table currently under construction.  
 | 
						|
*/
 | 
						|
void sqlite3CreateIndex(
 | 
						|
  Parse *pParse,     /* All information about this parse */
 | 
						|
  Token *pName1,     /* First part of index name. May be NULL */
 | 
						|
  Token *pName2,     /* Second part of index name. May be NULL */
 | 
						|
  SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
 | 
						|
  ExprList *pList,   /* A list of columns to be indexed */
 | 
						|
  int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
 | 
						|
  Token *pStart,     /* The CREATE token that begins a CREATE TABLE statement */
 | 
						|
  Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
 | 
						|
  int sortOrder,     /* Sort order of primary key when pList==NULL */
 | 
						|
  int ifNotExist     /* Omit error if index already exists */
 | 
						|
){
 | 
						|
  Table *pTab = 0;     /* Table to be indexed */
 | 
						|
  Index *pIndex = 0;   /* The index to be created */
 | 
						|
  char *zName = 0;     /* Name of the index */
 | 
						|
  int nName;           /* Number of characters in zName */
 | 
						|
  int i, j;
 | 
						|
  Token nullId;        /* Fake token for an empty ID list */
 | 
						|
  DbFixer sFix;        /* For assigning database names to pTable */
 | 
						|
  int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
  Db *pDb;             /* The specific table containing the indexed database */
 | 
						|
  int iDb;             /* Index of the database that is being written */
 | 
						|
  Token *pName = 0;    /* Unqualified name of the index to create */
 | 
						|
  struct ExprList_item *pListItem; /* For looping over pList */
 | 
						|
  int nCol;
 | 
						|
  int nExtra = 0;
 | 
						|
  char *zExtra;
 | 
						|
 | 
						|
  if( pParse->nErr || sqlite3MallocFailed() ){
 | 
						|
    goto exit_create_index;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
  ** Find the table that is to be indexed.  Return early if not found.
 | 
						|
  */
 | 
						|
  if( pTblName!=0 ){
 | 
						|
 | 
						|
    /* Use the two-part index name to determine the database 
 | 
						|
    ** to search for the table. 'Fix' the table name to this db
 | 
						|
    ** before looking up the table.
 | 
						|
    */
 | 
						|
    assert( pName1 && pName2 );
 | 
						|
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | 
						|
    if( iDb<0 ) goto exit_create_index;
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_TEMPDB
 | 
						|
    /* If the index name was unqualified, check if the the table
 | 
						|
    ** is a temp table. If so, set the database to 1.
 | 
						|
    */
 | 
						|
    pTab = sqlite3SrcListLookup(pParse, pTblName);
 | 
						|
    if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
 | 
						|
      iDb = 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
 | 
						|
        sqlite3FixSrcList(&sFix, pTblName)
 | 
						|
    ){
 | 
						|
      /* Because the parser constructs pTblName from a single identifier,
 | 
						|
      ** sqlite3FixSrcList can never fail. */
 | 
						|
      assert(0);
 | 
						|
    }
 | 
						|
    pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 
 | 
						|
        pTblName->a[0].zDatabase);
 | 
						|
    if( !pTab ) goto exit_create_index;
 | 
						|
    assert( db->aDb[iDb].pSchema==pTab->pSchema );
 | 
						|
  }else{
 | 
						|
    assert( pName==0 );
 | 
						|
    pTab = pParse->pNewTable;
 | 
						|
    if( !pTab ) goto exit_create_index;
 | 
						|
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | 
						|
  }
 | 
						|
  pDb = &db->aDb[iDb];
 | 
						|
 | 
						|
  if( pTab==0 || pParse->nErr ) goto exit_create_index;
 | 
						|
  if( pTab->readOnly ){
 | 
						|
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
 | 
						|
    goto exit_create_index;
 | 
						|
  }
 | 
						|
#ifndef SQLITE_OMIT_VIEW
 | 
						|
  if( pTab->pSelect ){
 | 
						|
    sqlite3ErrorMsg(pParse, "views may not be indexed");
 | 
						|
    goto exit_create_index;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /*
 | 
						|
  ** Find the name of the index.  Make sure there is not already another
 | 
						|
  ** index or table with the same name.  
 | 
						|
  **
 | 
						|
  ** Exception:  If we are reading the names of permanent indices from the
 | 
						|
  ** sqlite_master table (because some other process changed the schema) and
 | 
						|
  ** one of the index names collides with the name of a temporary table or
 | 
						|
  ** index, then we will continue to process this index.
 | 
						|
  **
 | 
						|
  ** If pName==0 it means that we are
 | 
						|
  ** dealing with a primary key or UNIQUE constraint.  We have to invent our
 | 
						|
  ** own name.
 | 
						|
  */
 | 
						|
  if( pName ){
 | 
						|
    zName = sqlite3NameFromToken(pName);
 | 
						|
    if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
 | 
						|
    if( zName==0 ) goto exit_create_index;
 | 
						|
    if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | 
						|
      goto exit_create_index;
 | 
						|
    }
 | 
						|
    if( !db->init.busy ){
 | 
						|
      if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
 | 
						|
      if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
 | 
						|
        if( !ifNotExist ){
 | 
						|
          sqlite3ErrorMsg(pParse, "index %s already exists", zName);
 | 
						|
        }
 | 
						|
        goto exit_create_index;
 | 
						|
      }
 | 
						|
      if( sqlite3FindTable(db, zName, 0)!=0 ){
 | 
						|
        sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
 | 
						|
        goto exit_create_index;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }else{
 | 
						|
    char zBuf[30];
 | 
						|
    int n;
 | 
						|
    Index *pLoop;
 | 
						|
    for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
 | 
						|
    sprintf(zBuf,"_%d",n);
 | 
						|
    zName = 0;
 | 
						|
    sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
 | 
						|
    if( zName==0 ) goto exit_create_index;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check for authorization to create an index.
 | 
						|
  */
 | 
						|
#ifndef SQLITE_OMIT_AUTHORIZATION
 | 
						|
  {
 | 
						|
    const char *zDb = pDb->zName;
 | 
						|
    if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
 | 
						|
      goto exit_create_index;
 | 
						|
    }
 | 
						|
    i = SQLITE_CREATE_INDEX;
 | 
						|
    if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
 | 
						|
    if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
 | 
						|
      goto exit_create_index;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* If pList==0, it means this routine was called to make a primary
 | 
						|
  ** key out of the last column added to the table under construction.
 | 
						|
  ** So create a fake list to simulate this.
 | 
						|
  */
 | 
						|
  if( pList==0 ){
 | 
						|
    nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
 | 
						|
    nullId.n = strlen((char*)nullId.z);
 | 
						|
    pList = sqlite3ExprListAppend(0, 0, &nullId);
 | 
						|
    if( pList==0 ) goto exit_create_index;
 | 
						|
    pList->a[0].sortOrder = sortOrder;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Figure out how many bytes of space are required to store explicitly
 | 
						|
  ** specified collation sequence names.
 | 
						|
  */
 | 
						|
  for(i=0; i<pList->nExpr; i++){
 | 
						|
    Expr *pExpr = pList->a[i].pExpr;
 | 
						|
    if( pExpr ){
 | 
						|
      nExtra += (1 + strlen(pExpr->pColl->zName));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* 
 | 
						|
  ** Allocate the index structure. 
 | 
						|
  */
 | 
						|
  nName = strlen(zName);
 | 
						|
  nCol = pList->nExpr;
 | 
						|
  pIndex = sqliteMalloc( 
 | 
						|
      sizeof(Index) +              /* Index structure  */
 | 
						|
      sizeof(int)*nCol +           /* Index.aiColumn   */
 | 
						|
      sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
 | 
						|
      sizeof(char *)*nCol +        /* Index.azColl     */
 | 
						|
      sizeof(u8)*nCol +            /* Index.aSortOrder */
 | 
						|
      nName + 1 +                  /* Index.zName      */
 | 
						|
      nExtra                       /* Collation sequence names */
 | 
						|
  );
 | 
						|
  if( sqlite3MallocFailed() ) goto exit_create_index;
 | 
						|
  pIndex->azColl = (char**)(&pIndex[1]);
 | 
						|
  pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
 | 
						|
  pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
 | 
						|
  pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
 | 
						|
  pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
 | 
						|
  zExtra = (char *)(&pIndex->zName[nName+1]);
 | 
						|
  strcpy(pIndex->zName, zName);
 | 
						|
  pIndex->pTable = pTab;
 | 
						|
  pIndex->nColumn = pList->nExpr;
 | 
						|
  pIndex->onError = onError;
 | 
						|
  pIndex->autoIndex = pName==0;
 | 
						|
  pIndex->pSchema = db->aDb[iDb].pSchema;
 | 
						|
 | 
						|
  /* Check to see if we should honor DESC requests on index columns
 | 
						|
  */
 | 
						|
  if( pDb->pSchema->file_format>=4 ){
 | 
						|
    sortOrderMask = -1;   /* Honor DESC */
 | 
						|
  }else{
 | 
						|
    sortOrderMask = 0;    /* Ignore DESC */
 | 
						|
  }
 | 
						|
 | 
						|
  /* Scan the names of the columns of the table to be indexed and
 | 
						|
  ** load the column indices into the Index structure.  Report an error
 | 
						|
  ** if any column is not found.
 | 
						|
  */
 | 
						|
  for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
 | 
						|
    const char *zColName = pListItem->zName;
 | 
						|
    Column *pTabCol;
 | 
						|
    int requestedSortOrder;
 | 
						|
    char *zColl;                   /* Collation sequence */
 | 
						|
 | 
						|
    for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
 | 
						|
      if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
 | 
						|
    }
 | 
						|
    if( j>=pTab->nCol ){
 | 
						|
      sqlite3ErrorMsg(pParse, "table %s has no column named %s",
 | 
						|
        pTab->zName, zColName);
 | 
						|
      goto exit_create_index;
 | 
						|
    }
 | 
						|
    pIndex->aiColumn[i] = j;
 | 
						|
    if( pListItem->pExpr ){
 | 
						|
      assert( pListItem->pExpr->pColl );
 | 
						|
      zColl = zExtra;
 | 
						|
      strcpy(zExtra, pListItem->pExpr->pColl->zName);
 | 
						|
      zExtra += (strlen(zColl) + 1);
 | 
						|
    }else{
 | 
						|
      zColl = pTab->aCol[j].zColl;
 | 
						|
      if( !zColl ){
 | 
						|
        zColl = db->pDfltColl->zName;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
 | 
						|
      goto exit_create_index;
 | 
						|
    }
 | 
						|
    pIndex->azColl[i] = zColl;
 | 
						|
    requestedSortOrder = pListItem->sortOrder & sortOrderMask;
 | 
						|
    pIndex->aSortOrder[i] = requestedSortOrder;
 | 
						|
  }
 | 
						|
  sqlite3DefaultRowEst(pIndex);
 | 
						|
 | 
						|
  if( pTab==pParse->pNewTable ){
 | 
						|
    /* This routine has been called to create an automatic index as a
 | 
						|
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
 | 
						|
    ** a PRIMARY KEY or UNIQUE clause following the column definitions.
 | 
						|
    ** i.e. one of:
 | 
						|
    **
 | 
						|
    ** CREATE TABLE t(x PRIMARY KEY, y);
 | 
						|
    ** CREATE TABLE t(x, y, UNIQUE(x, y));
 | 
						|
    **
 | 
						|
    ** Either way, check to see if the table already has such an index. If
 | 
						|
    ** so, don't bother creating this one. This only applies to
 | 
						|
    ** automatically created indices. Users can do as they wish with
 | 
						|
    ** explicit indices.
 | 
						|
    */
 | 
						|
    Index *pIdx;
 | 
						|
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
						|
      int k;
 | 
						|
      assert( pIdx->onError!=OE_None );
 | 
						|
      assert( pIdx->autoIndex );
 | 
						|
      assert( pIndex->onError!=OE_None );
 | 
						|
 | 
						|
      if( pIdx->nColumn!=pIndex->nColumn ) continue;
 | 
						|
      for(k=0; k<pIdx->nColumn; k++){
 | 
						|
        const char *z1 = pIdx->azColl[k];
 | 
						|
        const char *z2 = pIndex->azColl[k];
 | 
						|
        if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
 | 
						|
        if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
 | 
						|
        if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
 | 
						|
      }
 | 
						|
      if( k==pIdx->nColumn ){
 | 
						|
        if( pIdx->onError!=pIndex->onError ){
 | 
						|
          /* This constraint creates the same index as a previous
 | 
						|
          ** constraint specified somewhere in the CREATE TABLE statement.
 | 
						|
          ** However the ON CONFLICT clauses are different. If both this 
 | 
						|
          ** constraint and the previous equivalent constraint have explicit
 | 
						|
          ** ON CONFLICT clauses this is an error. Otherwise, use the
 | 
						|
          ** explicitly specified behaviour for the index.
 | 
						|
          */
 | 
						|
          if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
 | 
						|
            sqlite3ErrorMsg(pParse, 
 | 
						|
                "conflicting ON CONFLICT clauses specified", 0);
 | 
						|
          }
 | 
						|
          if( pIdx->onError==OE_Default ){
 | 
						|
            pIdx->onError = pIndex->onError;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        goto exit_create_index;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Link the new Index structure to its table and to the other
 | 
						|
  ** in-memory database structures. 
 | 
						|
  */
 | 
						|
  if( db->init.busy ){
 | 
						|
    Index *p;
 | 
						|
    p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
 | 
						|
                         pIndex->zName, strlen(pIndex->zName)+1, pIndex);
 | 
						|
    if( p ){
 | 
						|
      assert( p==pIndex );  /* Malloc must have failed */
 | 
						|
      goto exit_create_index;
 | 
						|
    }
 | 
						|
    db->flags |= SQLITE_InternChanges;
 | 
						|
    if( pTblName!=0 ){
 | 
						|
      pIndex->tnum = db->init.newTnum;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the db->init.busy is 0 then create the index on disk.  This
 | 
						|
  ** involves writing the index into the master table and filling in the
 | 
						|
  ** index with the current table contents.
 | 
						|
  **
 | 
						|
  ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
 | 
						|
  ** command.  db->init.busy is 1 when a database is opened and 
 | 
						|
  ** CREATE INDEX statements are read out of the master table.  In
 | 
						|
  ** the latter case the index already exists on disk, which is why
 | 
						|
  ** we don't want to recreate it.
 | 
						|
  **
 | 
						|
  ** If pTblName==0 it means this index is generated as a primary key
 | 
						|
  ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
 | 
						|
  ** has just been created, it contains no data and the index initialization
 | 
						|
  ** step can be skipped.
 | 
						|
  */
 | 
						|
  else if( db->init.busy==0 ){
 | 
						|
    Vdbe *v;
 | 
						|
    char *zStmt;
 | 
						|
    int iMem = pParse->nMem++;
 | 
						|
 | 
						|
    v = sqlite3GetVdbe(pParse);
 | 
						|
    if( v==0 ) goto exit_create_index;
 | 
						|
 | 
						|
 | 
						|
    /* Create the rootpage for the index
 | 
						|
    */
 | 
						|
    sqlite3BeginWriteOperation(pParse, 1, iDb);
 | 
						|
    sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
 | 
						|
 | 
						|
    /* Gather the complete text of the CREATE INDEX statement into
 | 
						|
    ** the zStmt variable
 | 
						|
    */
 | 
						|
    if( pStart && pEnd ){
 | 
						|
      /* A named index with an explicit CREATE INDEX statement */
 | 
						|
      zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s",
 | 
						|
        onError==OE_None ? "" : " UNIQUE",
 | 
						|
        pEnd->z - pName->z + 1,
 | 
						|
        pName->z);
 | 
						|
    }else{
 | 
						|
      /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
 | 
						|
      /* zStmt = sqlite3MPrintf(""); */
 | 
						|
      zStmt = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Add an entry in sqlite_master for this index
 | 
						|
    */
 | 
						|
    sqlite3NestedParse(pParse, 
 | 
						|
        "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
 | 
						|
        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | 
						|
        pIndex->zName,
 | 
						|
        pTab->zName,
 | 
						|
        zStmt
 | 
						|
    );
 | 
						|
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
    sqliteFree(zStmt);
 | 
						|
 | 
						|
    /* Fill the index with data and reparse the schema. Code an OP_Expire
 | 
						|
    ** to invalidate all pre-compiled statements.
 | 
						|
    */
 | 
						|
    if( pTblName ){
 | 
						|
      sqlite3RefillIndex(pParse, pIndex, iMem);
 | 
						|
      sqlite3ChangeCookie(db, v, iDb);
 | 
						|
      sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
 | 
						|
         sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC);
 | 
						|
      sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* When adding an index to the list of indices for a table, make
 | 
						|
  ** sure all indices labeled OE_Replace come after all those labeled
 | 
						|
  ** OE_Ignore.  This is necessary for the correct operation of UPDATE
 | 
						|
  ** and INSERT.
 | 
						|
  */
 | 
						|
  if( db->init.busy || pTblName==0 ){
 | 
						|
    if( onError!=OE_Replace || pTab->pIndex==0
 | 
						|
         || pTab->pIndex->onError==OE_Replace){
 | 
						|
      pIndex->pNext = pTab->pIndex;
 | 
						|
      pTab->pIndex = pIndex;
 | 
						|
    }else{
 | 
						|
      Index *pOther = pTab->pIndex;
 | 
						|
      while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
 | 
						|
        pOther = pOther->pNext;
 | 
						|
      }
 | 
						|
      pIndex->pNext = pOther->pNext;
 | 
						|
      pOther->pNext = pIndex;
 | 
						|
    }
 | 
						|
    pIndex = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Clean up before exiting */
 | 
						|
exit_create_index:
 | 
						|
  if( pIndex ){
 | 
						|
    freeIndex(pIndex);
 | 
						|
  }
 | 
						|
  sqlite3ExprListDelete(pList);
 | 
						|
  sqlite3SrcListDelete(pTblName);
 | 
						|
  sqliteFree(zName);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code to make sure the file format number is at least minFormat.
 | 
						|
** The generated code will increase the file format number if necessary.
 | 
						|
*/
 | 
						|
void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
 | 
						|
  Vdbe *v;
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v ){
 | 
						|
    sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
 | 
						|
    sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
 | 
						|
    sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Fill the Index.aiRowEst[] array with default information - information
 | 
						|
** to be used when we have not run the ANALYZE command.
 | 
						|
**
 | 
						|
** aiRowEst[0] is suppose to contain the number of elements in the index.
 | 
						|
** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
 | 
						|
** number of rows in the table that match any particular value of the
 | 
						|
** first column of the index.  aiRowEst[2] is an estimate of the number
 | 
						|
** of rows that match any particular combiniation of the first 2 columns
 | 
						|
** of the index.  And so forth.  It must always be the case that
 | 
						|
*
 | 
						|
**           aiRowEst[N]<=aiRowEst[N-1]
 | 
						|
**           aiRowEst[N]>=1
 | 
						|
**
 | 
						|
** Apart from that, we have little to go on besides intuition as to
 | 
						|
** how aiRowEst[] should be initialized.  The numbers generated here
 | 
						|
** are based on typical values found in actual indices.
 | 
						|
*/
 | 
						|
void sqlite3DefaultRowEst(Index *pIdx){
 | 
						|
  unsigned *a = pIdx->aiRowEst;
 | 
						|
  int i;
 | 
						|
  assert( a!=0 );
 | 
						|
  a[0] = 1000000;
 | 
						|
  for(i=pIdx->nColumn; i>=1; i--){
 | 
						|
    a[i] = 10;
 | 
						|
  }
 | 
						|
  if( pIdx->onError!=OE_None ){
 | 
						|
    a[pIdx->nColumn] = 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine will drop an existing named index.  This routine
 | 
						|
** implements the DROP INDEX statement.
 | 
						|
*/
 | 
						|
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
 | 
						|
  Index *pIndex;
 | 
						|
  Vdbe *v;
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
  int iDb;
 | 
						|
 | 
						|
  if( pParse->nErr || sqlite3MallocFailed() ){
 | 
						|
    goto exit_drop_index;
 | 
						|
  }
 | 
						|
  assert( pName->nSrc==1 );
 | 
						|
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | 
						|
    goto exit_drop_index;
 | 
						|
  }
 | 
						|
  pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
 | 
						|
  if( pIndex==0 ){
 | 
						|
    if( !ifExists ){
 | 
						|
      sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
 | 
						|
    }
 | 
						|
    pParse->checkSchema = 1;
 | 
						|
    goto exit_drop_index;
 | 
						|
  }
 | 
						|
  if( pIndex->autoIndex ){
 | 
						|
    sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
 | 
						|
      "or PRIMARY KEY constraint cannot be dropped", 0);
 | 
						|
    goto exit_drop_index;
 | 
						|
  }
 | 
						|
  iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
 | 
						|
#ifndef SQLITE_OMIT_AUTHORIZATION
 | 
						|
  {
 | 
						|
    int code = SQLITE_DROP_INDEX;
 | 
						|
    Table *pTab = pIndex->pTable;
 | 
						|
    const char *zDb = db->aDb[iDb].zName;
 | 
						|
    const char *zTab = SCHEMA_TABLE(iDb);
 | 
						|
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
 | 
						|
      goto exit_drop_index;
 | 
						|
    }
 | 
						|
    if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
 | 
						|
    if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
 | 
						|
      goto exit_drop_index;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Generate code to remove the index and from the master table */
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v ){
 | 
						|
    sqlite3NestedParse(pParse,
 | 
						|
       "DELETE FROM %Q.%s WHERE name=%Q",
 | 
						|
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | 
						|
       pIndex->zName
 | 
						|
    );
 | 
						|
    sqlite3ChangeCookie(db, v, iDb);
 | 
						|
    destroyRootPage(pParse, pIndex->tnum, iDb);
 | 
						|
    sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
 | 
						|
  }
 | 
						|
 | 
						|
exit_drop_index:
 | 
						|
  sqlite3SrcListDelete(pName);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** ppArray points into a structure where there is an array pointer
 | 
						|
** followed by two integers. The first integer is the
 | 
						|
** number of elements in the structure array.  The second integer
 | 
						|
** is the number of allocated slots in the array.
 | 
						|
**
 | 
						|
** In other words, the structure looks something like this:
 | 
						|
**
 | 
						|
**        struct Example1 {
 | 
						|
**          struct subElem *aEntry;
 | 
						|
**          int nEntry;
 | 
						|
**          int nAlloc;
 | 
						|
**        }
 | 
						|
**
 | 
						|
** The pnEntry parameter points to the equivalent of Example1.nEntry.
 | 
						|
**
 | 
						|
** This routine allocates a new slot in the array, zeros it out,
 | 
						|
** and returns its index.  If malloc fails a negative number is returned.
 | 
						|
**
 | 
						|
** szEntry is the sizeof of a single array entry.  initSize is the 
 | 
						|
** number of array entries allocated on the initial allocation.
 | 
						|
*/
 | 
						|
int sqlite3ArrayAllocate(void **ppArray, int szEntry, int initSize){
 | 
						|
  char *p;
 | 
						|
  int *an = (int*)&ppArray[1];
 | 
						|
  if( an[0]>=an[1] ){
 | 
						|
    void *pNew;
 | 
						|
    int newSize;
 | 
						|
    newSize = an[1]*2 + initSize;
 | 
						|
    pNew = sqliteRealloc(*ppArray, newSize*szEntry);
 | 
						|
    if( pNew==0 ){
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
    an[1] = newSize;
 | 
						|
    *ppArray = pNew;
 | 
						|
  }
 | 
						|
  p = *ppArray;
 | 
						|
  memset(&p[an[0]*szEntry], 0, szEntry);
 | 
						|
  return an[0]++;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Append a new element to the given IdList.  Create a new IdList if
 | 
						|
** need be.
 | 
						|
**
 | 
						|
** A new IdList is returned, or NULL if malloc() fails.
 | 
						|
*/
 | 
						|
IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
 | 
						|
  int i;
 | 
						|
  if( pList==0 ){
 | 
						|
    pList = sqliteMalloc( sizeof(IdList) );
 | 
						|
    if( pList==0 ) return 0;
 | 
						|
    pList->nAlloc = 0;
 | 
						|
  }
 | 
						|
  i = sqlite3ArrayAllocate((void**)&pList->a, sizeof(pList->a[0]), 5);
 | 
						|
  if( i<0 ){
 | 
						|
    sqlite3IdListDelete(pList);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pList->a[i].zName = sqlite3NameFromToken(pToken);
 | 
						|
  return pList;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete an IdList.
 | 
						|
*/
 | 
						|
void sqlite3IdListDelete(IdList *pList){
 | 
						|
  int i;
 | 
						|
  if( pList==0 ) return;
 | 
						|
  for(i=0; i<pList->nId; i++){
 | 
						|
    sqliteFree(pList->a[i].zName);
 | 
						|
  }
 | 
						|
  sqliteFree(pList->a);
 | 
						|
  sqliteFree(pList);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return the index in pList of the identifier named zId.  Return -1
 | 
						|
** if not found.
 | 
						|
*/
 | 
						|
int sqlite3IdListIndex(IdList *pList, const char *zName){
 | 
						|
  int i;
 | 
						|
  if( pList==0 ) return -1;
 | 
						|
  for(i=0; i<pList->nId; i++){
 | 
						|
    if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
 | 
						|
  }
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Append a new table name to the given SrcList.  Create a new SrcList if
 | 
						|
** need be.  A new entry is created in the SrcList even if pToken is NULL.
 | 
						|
**
 | 
						|
** A new SrcList is returned, or NULL if malloc() fails.
 | 
						|
**
 | 
						|
** If pDatabase is not null, it means that the table has an optional
 | 
						|
** database name prefix.  Like this:  "database.table".  The pDatabase
 | 
						|
** points to the table name and the pTable points to the database name.
 | 
						|
** The SrcList.a[].zName field is filled with the table name which might
 | 
						|
** come from pTable (if pDatabase is NULL) or from pDatabase.  
 | 
						|
** SrcList.a[].zDatabase is filled with the database name from pTable,
 | 
						|
** or with NULL if no database is specified.
 | 
						|
**
 | 
						|
** In other words, if call like this:
 | 
						|
**
 | 
						|
**         sqlite3SrcListAppend(A,B,0);
 | 
						|
**
 | 
						|
** Then B is a table name and the database name is unspecified.  If called
 | 
						|
** like this:
 | 
						|
**
 | 
						|
**         sqlite3SrcListAppend(A,B,C);
 | 
						|
**
 | 
						|
** Then C is the table name and B is the database name.
 | 
						|
*/
 | 
						|
SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
 | 
						|
  struct SrcList_item *pItem;
 | 
						|
  if( pList==0 ){
 | 
						|
    pList = sqliteMalloc( sizeof(SrcList) );
 | 
						|
    if( pList==0 ) return 0;
 | 
						|
    pList->nAlloc = 1;
 | 
						|
  }
 | 
						|
  if( pList->nSrc>=pList->nAlloc ){
 | 
						|
    SrcList *pNew;
 | 
						|
    pList->nAlloc *= 2;
 | 
						|
    pNew = sqliteRealloc(pList,
 | 
						|
               sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
 | 
						|
    if( pNew==0 ){
 | 
						|
      sqlite3SrcListDelete(pList);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    pList = pNew;
 | 
						|
  }
 | 
						|
  pItem = &pList->a[pList->nSrc];
 | 
						|
  memset(pItem, 0, sizeof(pList->a[0]));
 | 
						|
  if( pDatabase && pDatabase->z==0 ){
 | 
						|
    pDatabase = 0;
 | 
						|
  }
 | 
						|
  if( pDatabase && pTable ){
 | 
						|
    Token *pTemp = pDatabase;
 | 
						|
    pDatabase = pTable;
 | 
						|
    pTable = pTemp;
 | 
						|
  }
 | 
						|
  pItem->zName = sqlite3NameFromToken(pTable);
 | 
						|
  pItem->zDatabase = sqlite3NameFromToken(pDatabase);
 | 
						|
  pItem->iCursor = -1;
 | 
						|
  pItem->isPopulated = 0;
 | 
						|
  pList->nSrc++;
 | 
						|
  return pList;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Assign cursors to all tables in a SrcList
 | 
						|
*/
 | 
						|
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
 | 
						|
  int i;
 | 
						|
  struct SrcList_item *pItem;
 | 
						|
  assert(pList || sqlite3MallocFailed() );
 | 
						|
  if( pList ){
 | 
						|
    for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
 | 
						|
      if( pItem->iCursor>=0 ) break;
 | 
						|
      pItem->iCursor = pParse->nTab++;
 | 
						|
      if( pItem->pSelect ){
 | 
						|
        sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add an alias to the last identifier on the given identifier list.
 | 
						|
*/
 | 
						|
void sqlite3SrcListAddAlias(SrcList *pList, Token *pToken){
 | 
						|
  if( pList && pList->nSrc>0 ){
 | 
						|
    pList->a[pList->nSrc-1].zAlias = sqlite3NameFromToken(pToken);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete an entire SrcList including all its substructure.
 | 
						|
*/
 | 
						|
void sqlite3SrcListDelete(SrcList *pList){
 | 
						|
  int i;
 | 
						|
  struct SrcList_item *pItem;
 | 
						|
  if( pList==0 ) return;
 | 
						|
  for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
 | 
						|
    sqliteFree(pItem->zDatabase);
 | 
						|
    sqliteFree(pItem->zName);
 | 
						|
    sqliteFree(pItem->zAlias);
 | 
						|
    sqlite3DeleteTable(0, pItem->pTab);
 | 
						|
    sqlite3SelectDelete(pItem->pSelect);
 | 
						|
    sqlite3ExprDelete(pItem->pOn);
 | 
						|
    sqlite3IdListDelete(pItem->pUsing);
 | 
						|
  }
 | 
						|
  sqliteFree(pList);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Begin a transaction
 | 
						|
*/
 | 
						|
void sqlite3BeginTransaction(Parse *pParse, int type){
 | 
						|
  sqlite3 *db;
 | 
						|
  Vdbe *v;
 | 
						|
  int i;
 | 
						|
 | 
						|
  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | 
						|
  if( pParse->nErr || sqlite3MallocFailed() ) return;
 | 
						|
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
 | 
						|
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( !v ) return;
 | 
						|
  if( type!=TK_DEFERRED ){
 | 
						|
    for(i=0; i<db->nDb; i++){
 | 
						|
      sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Commit a transaction
 | 
						|
*/
 | 
						|
void sqlite3CommitTransaction(Parse *pParse){
 | 
						|
  sqlite3 *db;
 | 
						|
  Vdbe *v;
 | 
						|
 | 
						|
  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | 
						|
  if( pParse->nErr || sqlite3MallocFailed() ) return;
 | 
						|
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
 | 
						|
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v ){
 | 
						|
    sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Rollback a transaction
 | 
						|
*/
 | 
						|
void sqlite3RollbackTransaction(Parse *pParse){
 | 
						|
  sqlite3 *db;
 | 
						|
  Vdbe *v;
 | 
						|
 | 
						|
  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | 
						|
  if( pParse->nErr || sqlite3MallocFailed() ) return;
 | 
						|
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
 | 
						|
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v ){
 | 
						|
    sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Make sure the TEMP database is open and available for use.  Return
 | 
						|
** the number of errors.  Leave any error messages in the pParse structure.
 | 
						|
*/
 | 
						|
int sqlite3OpenTempDatabase(Parse *pParse){
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
  if( db->aDb[1].pBt==0 && !pParse->explain ){
 | 
						|
    int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
 | 
						|
    if( rc!=SQLITE_OK ){
 | 
						|
      sqlite3ErrorMsg(pParse, "unable to open a temporary database "
 | 
						|
        "file for storing temporary tables");
 | 
						|
      pParse->rc = rc;
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
    if( db->flags & !db->autoCommit ){
 | 
						|
      rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
 | 
						|
      if( rc!=SQLITE_OK ){
 | 
						|
        sqlite3ErrorMsg(pParse, "unable to get a write lock on "
 | 
						|
          "the temporary database file");
 | 
						|
        pParse->rc = rc;
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert( db->aDb[1].pSchema );
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate VDBE code that will verify the schema cookie and start
 | 
						|
** a read-transaction for all named database files.
 | 
						|
**
 | 
						|
** It is important that all schema cookies be verified and all
 | 
						|
** read transactions be started before anything else happens in
 | 
						|
** the VDBE program.  But this routine can be called after much other
 | 
						|
** code has been generated.  So here is what we do:
 | 
						|
**
 | 
						|
** The first time this routine is called, we code an OP_Goto that
 | 
						|
** will jump to a subroutine at the end of the program.  Then we
 | 
						|
** record every database that needs its schema verified in the
 | 
						|
** pParse->cookieMask field.  Later, after all other code has been
 | 
						|
** generated, the subroutine that does the cookie verifications and
 | 
						|
** starts the transactions will be coded and the OP_Goto P2 value
 | 
						|
** will be made to point to that subroutine.  The generation of the
 | 
						|
** cookie verification subroutine code happens in sqlite3FinishCoding().
 | 
						|
**
 | 
						|
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
 | 
						|
** schema on any databases.  This can be used to position the OP_Goto
 | 
						|
** early in the code, before we know if any database tables will be used.
 | 
						|
*/
 | 
						|
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
 | 
						|
  sqlite3 *db;
 | 
						|
  Vdbe *v;
 | 
						|
  int mask;
 | 
						|
 | 
						|
  v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v==0 ) return;  /* This only happens if there was a prior error */
 | 
						|
  db = pParse->db;
 | 
						|
  if( pParse->cookieGoto==0 ){
 | 
						|
    pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
 | 
						|
  }
 | 
						|
  if( iDb>=0 ){
 | 
						|
    assert( iDb<db->nDb );
 | 
						|
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
 | 
						|
    assert( iDb<MAX_ATTACHED+2 );
 | 
						|
    mask = 1<<iDb;
 | 
						|
    if( (pParse->cookieMask & mask)==0 ){
 | 
						|
      pParse->cookieMask |= mask;
 | 
						|
      pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
 | 
						|
      if( !OMIT_TEMPDB && iDb==1 ){
 | 
						|
        sqlite3OpenTempDatabase(pParse);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate VDBE code that prepares for doing an operation that
 | 
						|
** might change the database.
 | 
						|
**
 | 
						|
** This routine starts a new transaction if we are not already within
 | 
						|
** a transaction.  If we are already within a transaction, then a checkpoint
 | 
						|
** is set if the setStatement parameter is true.  A checkpoint should
 | 
						|
** be set for operations that might fail (due to a constraint) part of
 | 
						|
** the way through and which will need to undo some writes without having to
 | 
						|
** rollback the whole transaction.  For operations where all constraints
 | 
						|
** can be checked before any changes are made to the database, it is never
 | 
						|
** necessary to undo a write and the checkpoint should not be set.
 | 
						|
**
 | 
						|
** Only database iDb and the temp database are made writable by this call.
 | 
						|
** If iDb==0, then the main and temp databases are made writable.   If
 | 
						|
** iDb==1 then only the temp database is made writable.  If iDb>1 then the
 | 
						|
** specified auxiliary database and the temp database are made writable.
 | 
						|
*/
 | 
						|
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
 | 
						|
  Vdbe *v = sqlite3GetVdbe(pParse);
 | 
						|
  if( v==0 ) return;
 | 
						|
  sqlite3CodeVerifySchema(pParse, iDb);
 | 
						|
  pParse->writeMask |= 1<<iDb;
 | 
						|
  if( setStatement && pParse->nested==0 ){
 | 
						|
    sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
 | 
						|
  }
 | 
						|
  if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
 | 
						|
    sqlite3BeginWriteOperation(pParse, setStatement, 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Check to see if pIndex uses the collating sequence pColl.  Return
 | 
						|
** true if it does and false if it does not.
 | 
						|
*/
 | 
						|
#ifndef SQLITE_OMIT_REINDEX
 | 
						|
static int collationMatch(const char *zColl, Index *pIndex){
 | 
						|
  int i;
 | 
						|
  for(i=0; i<pIndex->nColumn; i++){
 | 
						|
    const char *z = pIndex->azColl[i];
 | 
						|
    if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Recompute all indices of pTab that use the collating sequence pColl.
 | 
						|
** If pColl==0 then recompute all indices of pTab.
 | 
						|
*/
 | 
						|
#ifndef SQLITE_OMIT_REINDEX
 | 
						|
static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
 | 
						|
  Index *pIndex;              /* An index associated with pTab */
 | 
						|
 | 
						|
  for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
 | 
						|
    if( zColl==0 || collationMatch(zColl, pIndex) ){
 | 
						|
      int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | 
						|
      sqlite3BeginWriteOperation(pParse, 0, iDb);
 | 
						|
      sqlite3RefillIndex(pParse, pIndex, -1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Recompute all indices of all tables in all databases where the
 | 
						|
** indices use the collating sequence pColl.  If pColl==0 then recompute
 | 
						|
** all indices everywhere.
 | 
						|
*/
 | 
						|
#ifndef SQLITE_OMIT_REINDEX
 | 
						|
static void reindexDatabases(Parse *pParse, char const *zColl){
 | 
						|
  Db *pDb;                    /* A single database */
 | 
						|
  int iDb;                    /* The database index number */
 | 
						|
  sqlite3 *db = pParse->db;   /* The database connection */
 | 
						|
  HashElem *k;                /* For looping over tables in pDb */
 | 
						|
  Table *pTab;                /* A table in the database */
 | 
						|
 | 
						|
  for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
 | 
						|
    assert( pDb!=0 );
 | 
						|
    for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
 | 
						|
      pTab = (Table*)sqliteHashData(k);
 | 
						|
      reindexTable(pParse, pTab, zColl);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code for the REINDEX command.
 | 
						|
**
 | 
						|
**        REINDEX                            -- 1
 | 
						|
**        REINDEX  <collation>               -- 2
 | 
						|
**        REINDEX  ?<database>.?<tablename>  -- 3
 | 
						|
**        REINDEX  ?<database>.?<indexname>  -- 4
 | 
						|
**
 | 
						|
** Form 1 causes all indices in all attached databases to be rebuilt.
 | 
						|
** Form 2 rebuilds all indices in all databases that use the named
 | 
						|
** collating function.  Forms 3 and 4 rebuild the named index or all
 | 
						|
** indices associated with the named table.
 | 
						|
*/
 | 
						|
#ifndef SQLITE_OMIT_REINDEX
 | 
						|
void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
 | 
						|
  CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
 | 
						|
  char *z;                    /* Name of a table or index */
 | 
						|
  const char *zDb;            /* Name of the database */
 | 
						|
  Table *pTab;                /* A table in the database */
 | 
						|
  Index *pIndex;              /* An index associated with pTab */
 | 
						|
  int iDb;                    /* The database index number */
 | 
						|
  sqlite3 *db = pParse->db;   /* The database connection */
 | 
						|
  Token *pObjName;            /* Name of the table or index to be reindexed */
 | 
						|
 | 
						|
  /* Read the database schema. If an error occurs, leave an error message
 | 
						|
  ** and code in pParse and return NULL. */
 | 
						|
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if( pName1==0 || pName1->z==0 ){
 | 
						|
    reindexDatabases(pParse, 0);
 | 
						|
    return;
 | 
						|
  }else if( pName2==0 || pName2->z==0 ){
 | 
						|
    assert( pName1->z );
 | 
						|
    pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0);
 | 
						|
    if( pColl ){
 | 
						|
      char *zColl = sqliteStrNDup((const char *)pName1->z, pName1->n);
 | 
						|
      if( zColl ){
 | 
						|
        reindexDatabases(pParse, zColl);
 | 
						|
        sqliteFree(zColl);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
 | 
						|
  if( iDb<0 ) return;
 | 
						|
  z = sqlite3NameFromToken(pObjName);
 | 
						|
  zDb = db->aDb[iDb].zName;
 | 
						|
  pTab = sqlite3FindTable(db, z, zDb);
 | 
						|
  if( pTab ){
 | 
						|
    reindexTable(pParse, pTab, 0);
 | 
						|
    sqliteFree(z);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  pIndex = sqlite3FindIndex(db, z, zDb);
 | 
						|
  sqliteFree(z);
 | 
						|
  if( pIndex ){
 | 
						|
    sqlite3BeginWriteOperation(pParse, 0, iDb);
 | 
						|
    sqlite3RefillIndex(pParse, pIndex, -1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
** Return a dynamicly allocated KeyInfo structure that can be used
 | 
						|
** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
 | 
						|
**
 | 
						|
** If successful, a pointer to the new structure is returned. In this case
 | 
						|
** the caller is responsible for calling sqliteFree() on the returned 
 | 
						|
** pointer. If an error occurs (out of memory or missing collation 
 | 
						|
** sequence), NULL is returned and the state of pParse updated to reflect
 | 
						|
** the error.
 | 
						|
*/
 | 
						|
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
 | 
						|
  int i;
 | 
						|
  int nCol = pIdx->nColumn;
 | 
						|
  int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
 | 
						|
  KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes);
 | 
						|
 | 
						|
  if( pKey ){
 | 
						|
    pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
 | 
						|
    assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
 | 
						|
    for(i=0; i<nCol; i++){
 | 
						|
      char *zColl = pIdx->azColl[i];
 | 
						|
      assert( zColl );
 | 
						|
      pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
 | 
						|
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
 | 
						|
    }
 | 
						|
    pKey->nField = nCol;
 | 
						|
  }
 | 
						|
 | 
						|
  if( pParse->nErr ){
 | 
						|
    sqliteFree(pKey);
 | 
						|
    pKey = 0;
 | 
						|
  }
 | 
						|
  return pKey;
 | 
						|
}
 |