1657 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1657 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
** 2001 September 15
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** This file contains routines used for analyzing expressions and
 | 
						|
** for generating VDBE code that evaluates expressions in SQLite.
 | 
						|
**
 | 
						|
** $Id: expr.c,v 1.1.1.1 2004-03-11 22:22:23 alex Exp $
 | 
						|
*/
 | 
						|
#include "sqliteInt.h"
 | 
						|
#include <ctype.h>
 | 
						|
 | 
						|
/*
 | 
						|
** Construct a new expression node and return a pointer to it.  Memory
 | 
						|
** for this node is obtained from sqliteMalloc().  The calling function
 | 
						|
** is responsible for making sure the node eventually gets freed.
 | 
						|
*/
 | 
						|
Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
 | 
						|
  Expr *pNew;
 | 
						|
  pNew = sqliteMalloc( sizeof(Expr) );
 | 
						|
  if( pNew==0 ){
 | 
						|
    /* When malloc fails, we leak memory from pLeft and pRight */
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pNew->op = op;
 | 
						|
  pNew->pLeft = pLeft;
 | 
						|
  pNew->pRight = pRight;
 | 
						|
  if( pToken ){
 | 
						|
    assert( pToken->dyn==0 );
 | 
						|
    pNew->token = *pToken;
 | 
						|
    pNew->span = *pToken;
 | 
						|
  }else{
 | 
						|
    assert( pNew->token.dyn==0 );
 | 
						|
    assert( pNew->token.z==0 );
 | 
						|
    assert( pNew->token.n==0 );
 | 
						|
    if( pLeft && pRight ){
 | 
						|
      sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
 | 
						|
    }else{
 | 
						|
      pNew->span = pNew->token;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Set the Expr.span field of the given expression to span all
 | 
						|
** text between the two given tokens.
 | 
						|
*/
 | 
						|
void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
 | 
						|
  assert( pRight!=0 );
 | 
						|
  assert( pLeft!=0 );
 | 
						|
  /* Note: pExpr might be NULL due to a prior malloc failure */
 | 
						|
  if( pExpr && pRight->z && pLeft->z ){
 | 
						|
    if( pLeft->dyn==0 && pRight->dyn==0 ){
 | 
						|
      pExpr->span.z = pLeft->z;
 | 
						|
      pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
 | 
						|
    }else{
 | 
						|
      pExpr->span.z = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Construct a new expression node for a function with multiple
 | 
						|
** arguments.
 | 
						|
*/
 | 
						|
Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
 | 
						|
  Expr *pNew;
 | 
						|
  pNew = sqliteMalloc( sizeof(Expr) );
 | 
						|
  if( pNew==0 ){
 | 
						|
    /* sqliteExprListDelete(pList); // Leak pList when malloc fails */
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pNew->op = TK_FUNCTION;
 | 
						|
  pNew->pList = pList;
 | 
						|
  if( pToken ){
 | 
						|
    assert( pToken->dyn==0 );
 | 
						|
    pNew->token = *pToken;
 | 
						|
  }else{
 | 
						|
    pNew->token.z = 0;
 | 
						|
  }
 | 
						|
  pNew->span = pNew->token;
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Recursively delete an expression tree.
 | 
						|
*/
 | 
						|
void sqliteExprDelete(Expr *p){
 | 
						|
  if( p==0 ) return;
 | 
						|
  if( p->span.dyn ) sqliteFree((char*)p->span.z);
 | 
						|
  if( p->token.dyn ) sqliteFree((char*)p->token.z);
 | 
						|
  sqliteExprDelete(p->pLeft);
 | 
						|
  sqliteExprDelete(p->pRight);
 | 
						|
  sqliteExprListDelete(p->pList);
 | 
						|
  sqliteSelectDelete(p->pSelect);
 | 
						|
  sqliteFree(p);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The following group of routines make deep copies of expressions,
 | 
						|
** expression lists, ID lists, and select statements.  The copies can
 | 
						|
** be deleted (by being passed to their respective ...Delete() routines)
 | 
						|
** without effecting the originals.
 | 
						|
**
 | 
						|
** The expression list, ID, and source lists return by sqliteExprListDup(),
 | 
						|
** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded 
 | 
						|
** by subsequent calls to sqlite*ListAppend() routines.
 | 
						|
**
 | 
						|
** Any tables that the SrcList might point to are not duplicated.
 | 
						|
*/
 | 
						|
Expr *sqliteExprDup(Expr *p){
 | 
						|
  Expr *pNew;
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  pNew = sqliteMallocRaw( sizeof(*p) );
 | 
						|
  if( pNew==0 ) return 0;
 | 
						|
  memcpy(pNew, p, sizeof(*pNew));
 | 
						|
  if( p->token.z!=0 ){
 | 
						|
    pNew->token.z = sqliteStrDup(p->token.z);
 | 
						|
    pNew->token.dyn = 1;
 | 
						|
  }else{
 | 
						|
    assert( pNew->token.z==0 );
 | 
						|
  }
 | 
						|
  pNew->span.z = 0;
 | 
						|
  pNew->pLeft = sqliteExprDup(p->pLeft);
 | 
						|
  pNew->pRight = sqliteExprDup(p->pRight);
 | 
						|
  pNew->pList = sqliteExprListDup(p->pList);
 | 
						|
  pNew->pSelect = sqliteSelectDup(p->pSelect);
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
void sqliteTokenCopy(Token *pTo, Token *pFrom){
 | 
						|
  if( pTo->dyn ) sqliteFree((char*)pTo->z);
 | 
						|
  if( pFrom->z ){
 | 
						|
    pTo->n = pFrom->n;
 | 
						|
    pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
 | 
						|
    pTo->dyn = 1;
 | 
						|
  }else{
 | 
						|
    pTo->z = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
ExprList *sqliteExprListDup(ExprList *p){
 | 
						|
  ExprList *pNew;
 | 
						|
  struct ExprList_item *pItem;
 | 
						|
  int i;
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  pNew = sqliteMalloc( sizeof(*pNew) );
 | 
						|
  if( pNew==0 ) return 0;
 | 
						|
  pNew->nExpr = pNew->nAlloc = p->nExpr;
 | 
						|
  pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
 | 
						|
  for(i=0; pItem && i<p->nExpr; i++, pItem++){
 | 
						|
    Expr *pNewExpr, *pOldExpr;
 | 
						|
    pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
 | 
						|
    if( pOldExpr->span.z!=0 && pNewExpr ){
 | 
						|
      /* Always make a copy of the span for top-level expressions in the
 | 
						|
      ** expression list.  The logic in SELECT processing that determines
 | 
						|
      ** the names of columns in the result set needs this information */
 | 
						|
      sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
 | 
						|
    }
 | 
						|
    assert( pNewExpr==0 || pNewExpr->span.z!=0 
 | 
						|
            || pOldExpr->span.z==0 || sqlite_malloc_failed );
 | 
						|
    pItem->zName = sqliteStrDup(p->a[i].zName);
 | 
						|
    pItem->sortOrder = p->a[i].sortOrder;
 | 
						|
    pItem->isAgg = p->a[i].isAgg;
 | 
						|
    pItem->done = 0;
 | 
						|
  }
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
SrcList *sqliteSrcListDup(SrcList *p){
 | 
						|
  SrcList *pNew;
 | 
						|
  int i;
 | 
						|
  int nByte;
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
 | 
						|
  pNew = sqliteMallocRaw( nByte );
 | 
						|
  if( pNew==0 ) return 0;
 | 
						|
  pNew->nSrc = pNew->nAlloc = p->nSrc;
 | 
						|
  for(i=0; i<p->nSrc; i++){
 | 
						|
    struct SrcList_item *pNewItem = &pNew->a[i];
 | 
						|
    struct SrcList_item *pOldItem = &p->a[i];
 | 
						|
    pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
 | 
						|
    pNewItem->zName = sqliteStrDup(pOldItem->zName);
 | 
						|
    pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
 | 
						|
    pNewItem->jointype = pOldItem->jointype;
 | 
						|
    pNewItem->iCursor = pOldItem->iCursor;
 | 
						|
    pNewItem->pTab = 0;
 | 
						|
    pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
 | 
						|
    pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
 | 
						|
    pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
 | 
						|
  }
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
IdList *sqliteIdListDup(IdList *p){
 | 
						|
  IdList *pNew;
 | 
						|
  int i;
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  pNew = sqliteMallocRaw( sizeof(*pNew) );
 | 
						|
  if( pNew==0 ) return 0;
 | 
						|
  pNew->nId = pNew->nAlloc = p->nId;
 | 
						|
  pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
 | 
						|
  if( pNew->a==0 ) return 0;
 | 
						|
  for(i=0; i<p->nId; i++){
 | 
						|
    struct IdList_item *pNewItem = &pNew->a[i];
 | 
						|
    struct IdList_item *pOldItem = &p->a[i];
 | 
						|
    pNewItem->zName = sqliteStrDup(pOldItem->zName);
 | 
						|
    pNewItem->idx = pOldItem->idx;
 | 
						|
  }
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
Select *sqliteSelectDup(Select *p){
 | 
						|
  Select *pNew;
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  pNew = sqliteMallocRaw( sizeof(*p) );
 | 
						|
  if( pNew==0 ) return 0;
 | 
						|
  pNew->isDistinct = p->isDistinct;
 | 
						|
  pNew->pEList = sqliteExprListDup(p->pEList);
 | 
						|
  pNew->pSrc = sqliteSrcListDup(p->pSrc);
 | 
						|
  pNew->pWhere = sqliteExprDup(p->pWhere);
 | 
						|
  pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
 | 
						|
  pNew->pHaving = sqliteExprDup(p->pHaving);
 | 
						|
  pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
 | 
						|
  pNew->op = p->op;
 | 
						|
  pNew->pPrior = sqliteSelectDup(p->pPrior);
 | 
						|
  pNew->nLimit = p->nLimit;
 | 
						|
  pNew->nOffset = p->nOffset;
 | 
						|
  pNew->zSelect = 0;
 | 
						|
  pNew->iLimit = -1;
 | 
						|
  pNew->iOffset = -1;
 | 
						|
  return pNew;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Add a new element to the end of an expression list.  If pList is
 | 
						|
** initially NULL, then create a new expression list.
 | 
						|
*/
 | 
						|
ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
 | 
						|
  if( pList==0 ){
 | 
						|
    pList = sqliteMalloc( sizeof(ExprList) );
 | 
						|
    if( pList==0 ){
 | 
						|
      /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    assert( pList->nAlloc==0 );
 | 
						|
  }
 | 
						|
  if( pList->nAlloc<=pList->nExpr ){
 | 
						|
    pList->nAlloc = pList->nAlloc*2 + 4;
 | 
						|
    pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
 | 
						|
    if( pList->a==0 ){
 | 
						|
      /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
 | 
						|
      pList->nExpr = pList->nAlloc = 0;
 | 
						|
      return pList;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert( pList->a!=0 );
 | 
						|
  if( pExpr || pName ){
 | 
						|
    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
 | 
						|
    memset(pItem, 0, sizeof(*pItem));
 | 
						|
    pItem->pExpr = pExpr;
 | 
						|
    if( pName ){
 | 
						|
      sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
 | 
						|
      sqliteDequote(pItem->zName);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return pList;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Delete an entire expression list.
 | 
						|
*/
 | 
						|
void sqliteExprListDelete(ExprList *pList){
 | 
						|
  int i;
 | 
						|
  if( pList==0 ) return;
 | 
						|
  for(i=0; i<pList->nExpr; i++){
 | 
						|
    sqliteExprDelete(pList->a[i].pExpr);
 | 
						|
    sqliteFree(pList->a[i].zName);
 | 
						|
  }
 | 
						|
  sqliteFree(pList->a);
 | 
						|
  sqliteFree(pList);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Walk an expression tree.  Return 1 if the expression is constant
 | 
						|
** and 0 if it involves variables.
 | 
						|
**
 | 
						|
** For the purposes of this function, a double-quoted string (ex: "abc")
 | 
						|
** is considered a variable but a single-quoted string (ex: 'abc') is
 | 
						|
** a constant.
 | 
						|
*/
 | 
						|
int sqliteExprIsConstant(Expr *p){
 | 
						|
  switch( p->op ){
 | 
						|
    case TK_ID:
 | 
						|
    case TK_COLUMN:
 | 
						|
    case TK_DOT:
 | 
						|
    case TK_FUNCTION:
 | 
						|
      return 0;
 | 
						|
    case TK_NULL:
 | 
						|
    case TK_STRING:
 | 
						|
    case TK_INTEGER:
 | 
						|
    case TK_FLOAT:
 | 
						|
    case TK_VARIABLE:
 | 
						|
      return 1;
 | 
						|
    default: {
 | 
						|
      if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
 | 
						|
      if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
 | 
						|
      if( p->pList ){
 | 
						|
        int i;
 | 
						|
        for(i=0; i<p->pList->nExpr; i++){
 | 
						|
          if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** If the given expression codes a constant integer that is small enough
 | 
						|
** to fit in a 32-bit integer, return 1 and put the value of the integer
 | 
						|
** in *pValue.  If the expression is not an integer or if it is too big
 | 
						|
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
 | 
						|
*/
 | 
						|
int sqliteExprIsInteger(Expr *p, int *pValue){
 | 
						|
  switch( p->op ){
 | 
						|
    case TK_INTEGER: {
 | 
						|
      if( sqliteFitsIn32Bits(p->token.z) ){
 | 
						|
        *pValue = atoi(p->token.z);
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_STRING: {
 | 
						|
      const char *z = p->token.z;
 | 
						|
      int n = p->token.n;
 | 
						|
      if( n>0 && z[0]=='-' ){ z++; n--; }
 | 
						|
      while( n>0 && *z && isdigit(*z) ){ z++; n--; }
 | 
						|
      if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
 | 
						|
        *pValue = atoi(p->token.z);
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_UPLUS: {
 | 
						|
      return sqliteExprIsInteger(p->pLeft, pValue);
 | 
						|
    }
 | 
						|
    case TK_UMINUS: {
 | 
						|
      int v;
 | 
						|
      if( sqliteExprIsInteger(p->pLeft, &v) ){
 | 
						|
        *pValue = -v;
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return TRUE if the given string is a row-id column name.
 | 
						|
*/
 | 
						|
int sqliteIsRowid(const char *z){
 | 
						|
  if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
 | 
						|
  if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
 | 
						|
  if( sqliteStrICmp(z, "OID")==0 ) return 1;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
 | 
						|
** that name in the set of source tables in pSrcList and make the pExpr 
 | 
						|
** expression node refer back to that source column.  The following changes
 | 
						|
** are made to pExpr:
 | 
						|
**
 | 
						|
**    pExpr->iDb           Set the index in db->aDb[] of the database holding
 | 
						|
**                         the table.
 | 
						|
**    pExpr->iTable        Set to the cursor number for the table obtained
 | 
						|
**                         from pSrcList.
 | 
						|
**    pExpr->iColumn       Set to the column number within the table.
 | 
						|
**    pExpr->dataType      Set to the appropriate data type for the column.
 | 
						|
**    pExpr->op            Set to TK_COLUMN.
 | 
						|
**    pExpr->pLeft         Any expression this points to is deleted
 | 
						|
**    pExpr->pRight        Any expression this points to is deleted.
 | 
						|
**
 | 
						|
** The pDbToken is the name of the database (the "X").  This value may be
 | 
						|
** NULL meaning that name is of the form Y.Z or Z.  Any available database
 | 
						|
** can be used.  The pTableToken is the name of the table (the "Y").  This
 | 
						|
** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
 | 
						|
** means that the form of the name is Z and that columns from any table
 | 
						|
** can be used.
 | 
						|
**
 | 
						|
** If the name cannot be resolved unambiguously, leave an error message
 | 
						|
** in pParse and return non-zero.  Return zero on success.
 | 
						|
*/
 | 
						|
static int lookupName(
 | 
						|
  Parse *pParse,      /* The parsing context */
 | 
						|
  Token *pDbToken,     /* Name of the database containing table, or NULL */
 | 
						|
  Token *pTableToken,  /* Name of table containing column, or NULL */
 | 
						|
  Token *pColumnToken, /* Name of the column. */
 | 
						|
  SrcList *pSrcList,   /* List of tables used to resolve column names */
 | 
						|
  ExprList *pEList,    /* List of expressions used to resolve "AS" */
 | 
						|
  Expr *pExpr          /* Make this EXPR node point to the selected column */
 | 
						|
){
 | 
						|
  char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
 | 
						|
  char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
 | 
						|
  char *zCol = 0;      /* Name of the column.  The "Z" */
 | 
						|
  int i, j;            /* Loop counters */
 | 
						|
  int cnt = 0;         /* Number of matching column names */
 | 
						|
  int cntTab = 0;      /* Number of matching table names */
 | 
						|
  sqlite *db = pParse->db;  /* The database */
 | 
						|
 | 
						|
  assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
 | 
						|
  if( pDbToken && pDbToken->z ){
 | 
						|
    zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
 | 
						|
    sqliteDequote(zDb);
 | 
						|
  }else{
 | 
						|
    zDb = 0;
 | 
						|
  }
 | 
						|
  if( pTableToken && pTableToken->z ){
 | 
						|
    zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
 | 
						|
    sqliteDequote(zTab);
 | 
						|
  }else{
 | 
						|
    assert( zDb==0 );
 | 
						|
    zTab = 0;
 | 
						|
  }
 | 
						|
  zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
 | 
						|
  sqliteDequote(zCol);
 | 
						|
  if( sqlite_malloc_failed ){
 | 
						|
    return 1;  /* Leak memory (zDb and zTab) if malloc fails */
 | 
						|
  }
 | 
						|
  assert( zTab==0 || pEList==0 );
 | 
						|
 | 
						|
  pExpr->iTable = -1;
 | 
						|
  for(i=0; i<pSrcList->nSrc; i++){
 | 
						|
    struct SrcList_item *pItem = &pSrcList->a[i];
 | 
						|
    Table *pTab = pItem->pTab;
 | 
						|
    Column *pCol;
 | 
						|
 | 
						|
    if( pTab==0 ) continue;
 | 
						|
    assert( pTab->nCol>0 );
 | 
						|
    if( zTab ){
 | 
						|
      if( pItem->zAlias ){
 | 
						|
        char *zTabName = pItem->zAlias;
 | 
						|
        if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
 | 
						|
      }else{
 | 
						|
        char *zTabName = pTab->zName;
 | 
						|
        if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
 | 
						|
        if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( 0==(cntTab++) ){
 | 
						|
      pExpr->iTable = pItem->iCursor;
 | 
						|
      pExpr->iDb = pTab->iDb;
 | 
						|
    }
 | 
						|
    for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
 | 
						|
      if( sqliteStrICmp(pCol->zName, zCol)==0 ){
 | 
						|
        cnt++;
 | 
						|
        pExpr->iTable = pItem->iCursor;
 | 
						|
        pExpr->iDb = pTab->iDb;
 | 
						|
        /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
 | 
						|
        pExpr->iColumn = j==pTab->iPKey ? -1 : j;
 | 
						|
        pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* If we have not already resolved the name, then maybe 
 | 
						|
  ** it is a new.* or old.* trigger argument reference
 | 
						|
  */
 | 
						|
  if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
 | 
						|
    TriggerStack *pTriggerStack = pParse->trigStack;
 | 
						|
    Table *pTab = 0;
 | 
						|
    if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
 | 
						|
      pExpr->iTable = pTriggerStack->newIdx;
 | 
						|
      assert( pTriggerStack->pTab );
 | 
						|
      pTab = pTriggerStack->pTab;
 | 
						|
    }else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
 | 
						|
      pExpr->iTable = pTriggerStack->oldIdx;
 | 
						|
      assert( pTriggerStack->pTab );
 | 
						|
      pTab = pTriggerStack->pTab;
 | 
						|
    }
 | 
						|
 | 
						|
    if( pTab ){ 
 | 
						|
      int j;
 | 
						|
      Column *pCol = pTab->aCol;
 | 
						|
      
 | 
						|
      pExpr->iDb = pTab->iDb;
 | 
						|
      cntTab++;
 | 
						|
      for(j=0; j < pTab->nCol; j++, pCol++) {
 | 
						|
        if( sqliteStrICmp(pCol->zName, zCol)==0 ){
 | 
						|
          cnt++;
 | 
						|
          pExpr->iColumn = j==pTab->iPKey ? -1 : j;
 | 
						|
          pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
  ** Perhaps the name is a reference to the ROWID
 | 
						|
  */
 | 
						|
  if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
 | 
						|
    cnt = 1;
 | 
						|
    pExpr->iColumn = -1;
 | 
						|
    pExpr->dataType = SQLITE_SO_NUM;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
  ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
 | 
						|
  ** might refer to an result-set alias.  This happens, for example, when
 | 
						|
  ** we are resolving names in the WHERE clause of the following command:
 | 
						|
  **
 | 
						|
  **     SELECT a+b AS x FROM table WHERE x<10;
 | 
						|
  **
 | 
						|
  ** In cases like this, replace pExpr with a copy of the expression that
 | 
						|
  ** forms the result set entry ("a+b" in the example) and return immediately.
 | 
						|
  ** Note that the expression in the result set should have already been
 | 
						|
  ** resolved by the time the WHERE clause is resolved.
 | 
						|
  */
 | 
						|
  if( cnt==0 && pEList!=0 ){
 | 
						|
    for(j=0; j<pEList->nExpr; j++){
 | 
						|
      char *zAs = pEList->a[j].zName;
 | 
						|
      if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
 | 
						|
        assert( pExpr->pLeft==0 && pExpr->pRight==0 );
 | 
						|
        pExpr->op = TK_AS;
 | 
						|
        pExpr->iColumn = j;
 | 
						|
        pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
 | 
						|
        sqliteFree(zCol);
 | 
						|
        assert( zTab==0 && zDb==0 );
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } 
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
  ** If X and Y are NULL (in other words if only the column name Z is
 | 
						|
  ** supplied) and the value of Z is enclosed in double-quotes, then
 | 
						|
  ** Z is a string literal if it doesn't match any column names.  In that
 | 
						|
  ** case, we need to return right away and not make any changes to
 | 
						|
  ** pExpr.
 | 
						|
  */
 | 
						|
  if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
 | 
						|
    sqliteFree(zCol);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
  ** cnt==0 means there was not match.  cnt>1 means there were two or
 | 
						|
  ** more matches.  Either way, we have an error.
 | 
						|
  */
 | 
						|
  if( cnt!=1 ){
 | 
						|
    char *z = 0;
 | 
						|
    char *zErr;
 | 
						|
    zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
 | 
						|
    if( zDb ){
 | 
						|
      sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
 | 
						|
    }else if( zTab ){
 | 
						|
      sqliteSetString(&z, zTab, ".", zCol, 0);
 | 
						|
    }else{
 | 
						|
      z = sqliteStrDup(zCol);
 | 
						|
    }
 | 
						|
    sqliteErrorMsg(pParse, zErr, z);
 | 
						|
    sqliteFree(z);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Clean up and return
 | 
						|
  */
 | 
						|
  sqliteFree(zDb);
 | 
						|
  sqliteFree(zTab);
 | 
						|
  sqliteFree(zCol);
 | 
						|
  sqliteExprDelete(pExpr->pLeft);
 | 
						|
  pExpr->pLeft = 0;
 | 
						|
  sqliteExprDelete(pExpr->pRight);
 | 
						|
  pExpr->pRight = 0;
 | 
						|
  pExpr->op = TK_COLUMN;
 | 
						|
  sqliteAuthRead(pParse, pExpr, pSrcList);
 | 
						|
  return cnt!=1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine walks an expression tree and resolves references to
 | 
						|
** table columns.  Nodes of the form ID.ID or ID resolve into an
 | 
						|
** index to the table in the table list and a column offset.  The 
 | 
						|
** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
 | 
						|
** value is changed to the index of the referenced table in pTabList
 | 
						|
** plus the "base" value.  The base value will ultimately become the
 | 
						|
** VDBE cursor number for a cursor that is pointing into the referenced
 | 
						|
** table.  The Expr.iColumn value is changed to the index of the column 
 | 
						|
** of the referenced table.  The Expr.iColumn value for the special
 | 
						|
** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
 | 
						|
** alias for ROWID.
 | 
						|
**
 | 
						|
** We also check for instances of the IN operator.  IN comes in two
 | 
						|
** forms:
 | 
						|
**
 | 
						|
**           expr IN (exprlist)
 | 
						|
** and
 | 
						|
**           expr IN (SELECT ...)
 | 
						|
**
 | 
						|
** The first form is handled by creating a set holding the list
 | 
						|
** of allowed values.  The second form causes the SELECT to generate 
 | 
						|
** a temporary table.
 | 
						|
**
 | 
						|
** This routine also looks for scalar SELECTs that are part of an expression.
 | 
						|
** If it finds any, it generates code to write the value of that select
 | 
						|
** into a memory cell.
 | 
						|
**
 | 
						|
** Unknown columns or tables provoke an error.  The function returns
 | 
						|
** the number of errors seen and leaves an error message on pParse->zErrMsg.
 | 
						|
*/
 | 
						|
int sqliteExprResolveIds(
 | 
						|
  Parse *pParse,     /* The parser context */
 | 
						|
  SrcList *pSrcList, /* List of tables used to resolve column names */
 | 
						|
  ExprList *pEList,  /* List of expressions used to resolve "AS" */
 | 
						|
  Expr *pExpr        /* The expression to be analyzed. */
 | 
						|
){
 | 
						|
  int i;
 | 
						|
 | 
						|
  if( pExpr==0 || pSrcList==0 ) return 0;
 | 
						|
  for(i=0; i<pSrcList->nSrc; i++){
 | 
						|
    assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
 | 
						|
  }
 | 
						|
  switch( pExpr->op ){
 | 
						|
    /* Double-quoted strings (ex: "abc") are used as identifiers if
 | 
						|
    ** possible.  Otherwise they remain as strings.  Single-quoted
 | 
						|
    ** strings (ex: 'abc') are always string literals.
 | 
						|
    */
 | 
						|
    case TK_STRING: {
 | 
						|
      if( pExpr->token.z[0]=='\'' ) break;
 | 
						|
      /* Fall thru into the TK_ID case if this is a double-quoted string */
 | 
						|
    }
 | 
						|
    /* A lone identifier is the name of a columnd.
 | 
						|
    */
 | 
						|
    case TK_ID: {
 | 
						|
      if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break; 
 | 
						|
    }
 | 
						|
  
 | 
						|
    /* A table name and column name:     ID.ID
 | 
						|
    ** Or a database, table and column:  ID.ID.ID
 | 
						|
    */
 | 
						|
    case TK_DOT: {
 | 
						|
      Token *pColumn;
 | 
						|
      Token *pTable;
 | 
						|
      Token *pDb;
 | 
						|
      Expr *pRight;
 | 
						|
 | 
						|
      pRight = pExpr->pRight;
 | 
						|
      if( pRight->op==TK_ID ){
 | 
						|
        pDb = 0;
 | 
						|
        pTable = &pExpr->pLeft->token;
 | 
						|
        pColumn = &pRight->token;
 | 
						|
      }else{
 | 
						|
        assert( pRight->op==TK_DOT );
 | 
						|
        pDb = &pExpr->pLeft->token;
 | 
						|
        pTable = &pRight->pLeft->token;
 | 
						|
        pColumn = &pRight->pRight->token;
 | 
						|
      }
 | 
						|
      if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case TK_IN: {
 | 
						|
      Vdbe *v = sqliteGetVdbe(pParse);
 | 
						|
      if( v==0 ) return 1;
 | 
						|
      if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      if( pExpr->pSelect ){
 | 
						|
        /* Case 1:     expr IN (SELECT ...)
 | 
						|
        **
 | 
						|
        ** Generate code to write the results of the select into a temporary
 | 
						|
        ** table.  The cursor number of the temporary table has already
 | 
						|
        ** been put in iTable by sqliteExprResolveInSelect().
 | 
						|
        */
 | 
						|
        pExpr->iTable = pParse->nTab++;
 | 
						|
        sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
 | 
						|
        sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
 | 
						|
      }else if( pExpr->pList ){
 | 
						|
        /* Case 2:     expr IN (exprlist)
 | 
						|
        **
 | 
						|
        ** Create a set to put the exprlist values in.  The Set id is stored
 | 
						|
        ** in iTable.
 | 
						|
        */
 | 
						|
        int i, iSet;
 | 
						|
        for(i=0; i<pExpr->pList->nExpr; i++){
 | 
						|
          Expr *pE2 = pExpr->pList->a[i].pExpr;
 | 
						|
          if( !sqliteExprIsConstant(pE2) ){
 | 
						|
            sqliteErrorMsg(pParse,
 | 
						|
              "right-hand side of IN operator must be constant");
 | 
						|
            return 1;
 | 
						|
          }
 | 
						|
          if( sqliteExprCheck(pParse, pE2, 0, 0) ){
 | 
						|
            return 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        iSet = pExpr->iTable = pParse->nSet++;
 | 
						|
        for(i=0; i<pExpr->pList->nExpr; i++){
 | 
						|
          Expr *pE2 = pExpr->pList->a[i].pExpr;
 | 
						|
          switch( pE2->op ){
 | 
						|
            case TK_FLOAT:
 | 
						|
            case TK_INTEGER:
 | 
						|
            case TK_STRING: {
 | 
						|
              int addr;
 | 
						|
              assert( pE2->token.z );
 | 
						|
              addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
 | 
						|
                                  pE2->token.z, pE2->token.n);
 | 
						|
              sqliteVdbeDequoteP3(v, addr);
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            default: {
 | 
						|
              sqliteExprCode(pParse, pE2);
 | 
						|
              sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case TK_SELECT: {
 | 
						|
      /* This has to be a scalar SELECT.  Generate code to put the
 | 
						|
      ** value of this select in a memory cell and record the number
 | 
						|
      ** of the memory cell in iColumn.
 | 
						|
      */
 | 
						|
      pExpr->iColumn = pParse->nMem++;
 | 
						|
      if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* For all else, just recursively walk the tree */
 | 
						|
    default: {
 | 
						|
      if( pExpr->pLeft
 | 
						|
      && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      if( pExpr->pRight 
 | 
						|
      && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      if( pExpr->pList ){
 | 
						|
        int i;
 | 
						|
        ExprList *pList = pExpr->pList;
 | 
						|
        for(i=0; i<pList->nExpr; i++){
 | 
						|
          Expr *pArg = pList->a[i].pExpr;
 | 
						|
          if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
 | 
						|
            return 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** pExpr is a node that defines a function of some kind.  It might
 | 
						|
** be a syntactic function like "count(x)" or it might be a function
 | 
						|
** that implements an operator, like "a LIKE b".  
 | 
						|
**
 | 
						|
** This routine makes *pzName point to the name of the function and 
 | 
						|
** *pnName hold the number of characters in the function name.
 | 
						|
*/
 | 
						|
static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_FUNCTION: {
 | 
						|
      *pzName = pExpr->token.z;
 | 
						|
      *pnName = pExpr->token.n;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_LIKE: {
 | 
						|
      *pzName = "like";
 | 
						|
      *pnName = 4;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_GLOB: {
 | 
						|
      *pzName = "glob";
 | 
						|
      *pnName = 4;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      *pzName = "can't happen";
 | 
						|
      *pnName = 12;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Error check the functions in an expression.  Make sure all
 | 
						|
** function names are recognized and all functions have the correct
 | 
						|
** number of arguments.  Leave an error message in pParse->zErrMsg
 | 
						|
** if anything is amiss.  Return the number of errors.
 | 
						|
**
 | 
						|
** if pIsAgg is not null and this expression is an aggregate function
 | 
						|
** (like count(*) or max(value)) then write a 1 into *pIsAgg.
 | 
						|
*/
 | 
						|
int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
 | 
						|
  int nErr = 0;
 | 
						|
  if( pExpr==0 ) return 0;
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_GLOB:
 | 
						|
    case TK_LIKE:
 | 
						|
    case TK_FUNCTION: {
 | 
						|
      int n = pExpr->pList ? pExpr->pList->nExpr : 0;  /* Number of arguments */
 | 
						|
      int no_such_func = 0;       /* True if no such function exists */
 | 
						|
      int wrong_num_args = 0;     /* True if wrong number of arguments */
 | 
						|
      int is_agg = 0;             /* True if is an aggregate function */
 | 
						|
      int i;
 | 
						|
      int nId;                    /* Number of characters in function name */
 | 
						|
      const char *zId;            /* The function name. */
 | 
						|
      FuncDef *pDef;
 | 
						|
 | 
						|
      getFunctionName(pExpr, &zId, &nId);
 | 
						|
      pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
 | 
						|
      if( pDef==0 ){
 | 
						|
        pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
 | 
						|
        if( pDef==0 ){
 | 
						|
          no_such_func = 1;
 | 
						|
        }else{
 | 
						|
          wrong_num_args = 1;
 | 
						|
        }
 | 
						|
      }else{
 | 
						|
        is_agg = pDef->xFunc==0;
 | 
						|
      }
 | 
						|
      if( is_agg && !allowAgg ){
 | 
						|
        sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
 | 
						|
        nErr++;
 | 
						|
        is_agg = 0;
 | 
						|
      }else if( no_such_func ){
 | 
						|
        sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
 | 
						|
        nErr++;
 | 
						|
      }else if( wrong_num_args ){
 | 
						|
        sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
 | 
						|
             nId, zId);
 | 
						|
        nErr++;
 | 
						|
      }
 | 
						|
      if( is_agg ){
 | 
						|
        pExpr->op = TK_AGG_FUNCTION;
 | 
						|
        if( pIsAgg ) *pIsAgg = 1;
 | 
						|
      }
 | 
						|
      for(i=0; nErr==0 && i<n; i++){
 | 
						|
        nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
 | 
						|
                               allowAgg && !is_agg, pIsAgg);
 | 
						|
      }
 | 
						|
      if( pDef==0 ){
 | 
						|
        /* Already reported an error */
 | 
						|
      }else if( pDef->dataType>=0 ){
 | 
						|
        if( pDef->dataType<n ){
 | 
						|
          pExpr->dataType = 
 | 
						|
             sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
 | 
						|
        }else{
 | 
						|
          pExpr->dataType = SQLITE_SO_NUM;
 | 
						|
        }
 | 
						|
      }else if( pDef->dataType==SQLITE_ARGS ){
 | 
						|
        pDef->dataType = SQLITE_SO_TEXT;
 | 
						|
        for(i=0; i<n; i++){
 | 
						|
          if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
 | 
						|
            pExpr->dataType = SQLITE_SO_NUM;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }else if( pDef->dataType==SQLITE_NUMERIC ){
 | 
						|
        pExpr->dataType = SQLITE_SO_NUM;
 | 
						|
      }else{
 | 
						|
        pExpr->dataType = SQLITE_SO_TEXT;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      if( pExpr->pLeft ){
 | 
						|
        nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
 | 
						|
      }
 | 
						|
      if( nErr==0 && pExpr->pRight ){
 | 
						|
        nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
 | 
						|
      }
 | 
						|
      if( nErr==0 && pExpr->pList ){
 | 
						|
        int n = pExpr->pList->nExpr;
 | 
						|
        int i;
 | 
						|
        for(i=0; nErr==0 && i<n; i++){
 | 
						|
          Expr *pE2 = pExpr->pList->a[i].pExpr;
 | 
						|
          nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nErr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
 | 
						|
** given expression should sort as numeric values or as text.
 | 
						|
**
 | 
						|
** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
 | 
						|
** both been called on the expression before it is passed to this routine.
 | 
						|
*/
 | 
						|
int sqliteExprType(Expr *p){
 | 
						|
  if( p==0 ) return SQLITE_SO_NUM;
 | 
						|
  while( p ) switch( p->op ){
 | 
						|
    case TK_PLUS:
 | 
						|
    case TK_MINUS:
 | 
						|
    case TK_STAR:
 | 
						|
    case TK_SLASH:
 | 
						|
    case TK_AND:
 | 
						|
    case TK_OR:
 | 
						|
    case TK_ISNULL:
 | 
						|
    case TK_NOTNULL:
 | 
						|
    case TK_NOT:
 | 
						|
    case TK_UMINUS:
 | 
						|
    case TK_UPLUS:
 | 
						|
    case TK_BITAND:
 | 
						|
    case TK_BITOR:
 | 
						|
    case TK_BITNOT:
 | 
						|
    case TK_LSHIFT:
 | 
						|
    case TK_RSHIFT:
 | 
						|
    case TK_REM:
 | 
						|
    case TK_INTEGER:
 | 
						|
    case TK_FLOAT:
 | 
						|
    case TK_IN:
 | 
						|
    case TK_BETWEEN:
 | 
						|
    case TK_GLOB:
 | 
						|
    case TK_LIKE:
 | 
						|
      return SQLITE_SO_NUM;
 | 
						|
 | 
						|
    case TK_STRING:
 | 
						|
    case TK_NULL:
 | 
						|
    case TK_CONCAT:
 | 
						|
    case TK_VARIABLE:
 | 
						|
      return SQLITE_SO_TEXT;
 | 
						|
 | 
						|
    case TK_LT:
 | 
						|
    case TK_LE:
 | 
						|
    case TK_GT:
 | 
						|
    case TK_GE:
 | 
						|
    case TK_NE:
 | 
						|
    case TK_EQ:
 | 
						|
      if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
 | 
						|
        return SQLITE_SO_NUM;
 | 
						|
      }
 | 
						|
      p = p->pRight;
 | 
						|
      break;
 | 
						|
 | 
						|
    case TK_AS:
 | 
						|
      p = p->pLeft;
 | 
						|
      break;
 | 
						|
 | 
						|
    case TK_COLUMN:
 | 
						|
    case TK_FUNCTION:
 | 
						|
    case TK_AGG_FUNCTION:
 | 
						|
      return p->dataType;
 | 
						|
 | 
						|
    case TK_SELECT:
 | 
						|
      assert( p->pSelect );
 | 
						|
      assert( p->pSelect->pEList );
 | 
						|
      assert( p->pSelect->pEList->nExpr>0 );
 | 
						|
      p = p->pSelect->pEList->a[0].pExpr;
 | 
						|
      break;
 | 
						|
 | 
						|
    case TK_CASE: {
 | 
						|
      if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
 | 
						|
        return SQLITE_SO_NUM;
 | 
						|
      }
 | 
						|
      if( p->pList ){
 | 
						|
        int i;
 | 
						|
        ExprList *pList = p->pList;
 | 
						|
        for(i=1; i<pList->nExpr; i+=2){
 | 
						|
          if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
 | 
						|
            return SQLITE_SO_NUM;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return SQLITE_SO_TEXT;
 | 
						|
    }
 | 
						|
 | 
						|
    default:
 | 
						|
      assert( p->op==TK_ABORT );  /* Can't Happen */
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return SQLITE_SO_NUM;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code into the current Vdbe to evaluate the given
 | 
						|
** expression and leave the result on the top of stack.
 | 
						|
*/
 | 
						|
void sqliteExprCode(Parse *pParse, Expr *pExpr){
 | 
						|
  Vdbe *v = pParse->pVdbe;
 | 
						|
  int op;
 | 
						|
  if( v==0 || pExpr==0 ) return;
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_PLUS:     op = OP_Add;      break;
 | 
						|
    case TK_MINUS:    op = OP_Subtract; break;
 | 
						|
    case TK_STAR:     op = OP_Multiply; break;
 | 
						|
    case TK_SLASH:    op = OP_Divide;   break;
 | 
						|
    case TK_AND:      op = OP_And;      break;
 | 
						|
    case TK_OR:       op = OP_Or;       break;
 | 
						|
    case TK_LT:       op = OP_Lt;       break;
 | 
						|
    case TK_LE:       op = OP_Le;       break;
 | 
						|
    case TK_GT:       op = OP_Gt;       break;
 | 
						|
    case TK_GE:       op = OP_Ge;       break;
 | 
						|
    case TK_NE:       op = OP_Ne;       break;
 | 
						|
    case TK_EQ:       op = OP_Eq;       break;
 | 
						|
    case TK_ISNULL:   op = OP_IsNull;   break;
 | 
						|
    case TK_NOTNULL:  op = OP_NotNull;  break;
 | 
						|
    case TK_NOT:      op = OP_Not;      break;
 | 
						|
    case TK_UMINUS:   op = OP_Negative; break;
 | 
						|
    case TK_BITAND:   op = OP_BitAnd;   break;
 | 
						|
    case TK_BITOR:    op = OP_BitOr;    break;
 | 
						|
    case TK_BITNOT:   op = OP_BitNot;   break;
 | 
						|
    case TK_LSHIFT:   op = OP_ShiftLeft;  break;
 | 
						|
    case TK_RSHIFT:   op = OP_ShiftRight; break;
 | 
						|
    case TK_REM:      op = OP_Remainder;  break;
 | 
						|
    default: break;
 | 
						|
  }
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_COLUMN: {
 | 
						|
      if( pParse->useAgg ){
 | 
						|
        sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
 | 
						|
      }else if( pExpr->iColumn>=0 ){
 | 
						|
        sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_STRING:
 | 
						|
    case TK_FLOAT:
 | 
						|
    case TK_INTEGER: {
 | 
						|
      if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
 | 
						|
        sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      }
 | 
						|
      assert( pExpr->token.z );
 | 
						|
      sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
 | 
						|
      sqliteVdbeDequoteP3(v, -1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_NULL: {
 | 
						|
      sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_VARIABLE: {
 | 
						|
      sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_LT:
 | 
						|
    case TK_LE:
 | 
						|
    case TK_GT:
 | 
						|
    case TK_GE:
 | 
						|
    case TK_NE:
 | 
						|
    case TK_EQ: {
 | 
						|
      if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
 | 
						|
        op += 6;  /* Convert numeric opcodes to text opcodes */
 | 
						|
      }
 | 
						|
      /* Fall through into the next case */
 | 
						|
    }
 | 
						|
    case TK_AND:
 | 
						|
    case TK_OR:
 | 
						|
    case TK_PLUS:
 | 
						|
    case TK_STAR:
 | 
						|
    case TK_MINUS:
 | 
						|
    case TK_REM:
 | 
						|
    case TK_BITAND:
 | 
						|
    case TK_BITOR:
 | 
						|
    case TK_SLASH: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
      sqliteVdbeAddOp(v, op, 0, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_LSHIFT:
 | 
						|
    case TK_RSHIFT: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteVdbeAddOp(v, op, 0, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_CONCAT: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
      sqliteVdbeAddOp(v, OP_Concat, 2, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_UMINUS: {
 | 
						|
      assert( pExpr->pLeft );
 | 
						|
      if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
 | 
						|
        Token *p = &pExpr->pLeft->token;
 | 
						|
        char *z = sqliteMalloc( p->n + 2 );
 | 
						|
        sprintf(z, "-%.*s", p->n, p->z);
 | 
						|
        if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
 | 
						|
          sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
 | 
						|
        }else{
 | 
						|
          sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
        }
 | 
						|
        sqliteVdbeChangeP3(v, -1, z, p->n+1);
 | 
						|
        sqliteFree(z);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      /* Fall through into TK_NOT */
 | 
						|
    }
 | 
						|
    case TK_BITNOT:
 | 
						|
    case TK_NOT: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteVdbeAddOp(v, op, 0, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_ISNULL:
 | 
						|
    case TK_NOTNULL: {
 | 
						|
      int dest;
 | 
						|
      sqliteVdbeAddOp(v, OP_Integer, 1, 0);
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      dest = sqliteVdbeCurrentAddr(v) + 2;
 | 
						|
      sqliteVdbeAddOp(v, op, 1, dest);
 | 
						|
      sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_AGG_FUNCTION: {
 | 
						|
      sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_GLOB:
 | 
						|
    case TK_LIKE:
 | 
						|
    case TK_FUNCTION: {
 | 
						|
      ExprList *pList = pExpr->pList;
 | 
						|
      int nExpr = pList ? pList->nExpr : 0;
 | 
						|
      FuncDef *pDef;
 | 
						|
      int nId;
 | 
						|
      const char *zId;
 | 
						|
      getFunctionName(pExpr, &zId, &nId);
 | 
						|
      pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
 | 
						|
      assert( pDef!=0 );
 | 
						|
      nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
 | 
						|
      sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_SELECT: {
 | 
						|
      sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_IN: {
 | 
						|
      int addr;
 | 
						|
      sqliteVdbeAddOp(v, OP_Integer, 1, 0);
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      addr = sqliteVdbeCurrentAddr(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
 | 
						|
      if( pExpr->pSelect ){
 | 
						|
        sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_BETWEEN: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
 | 
						|
      sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
 | 
						|
      sqliteVdbeAddOp(v, OP_Ge, 0, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pull, 1, 0);
 | 
						|
      sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
 | 
						|
      sqliteVdbeAddOp(v, OP_Le, 0, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_And, 0, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_UPLUS:
 | 
						|
    case TK_AS: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_CASE: {
 | 
						|
      int expr_end_label;
 | 
						|
      int jumpInst;
 | 
						|
      int addr;
 | 
						|
      int nExpr;
 | 
						|
      int i;
 | 
						|
 | 
						|
      assert(pExpr->pList);
 | 
						|
      assert((pExpr->pList->nExpr % 2) == 0);
 | 
						|
      assert(pExpr->pList->nExpr > 0);
 | 
						|
      nExpr = pExpr->pList->nExpr;
 | 
						|
      expr_end_label = sqliteVdbeMakeLabel(v);
 | 
						|
      if( pExpr->pLeft ){
 | 
						|
        sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      }
 | 
						|
      for(i=0; i<nExpr; i=i+2){
 | 
						|
        sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
 | 
						|
        if( pExpr->pLeft ){
 | 
						|
          sqliteVdbeAddOp(v, OP_Dup, 1, 1);
 | 
						|
          jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
 | 
						|
          sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
        }else{
 | 
						|
          jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
 | 
						|
        }
 | 
						|
        sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
 | 
						|
        sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
 | 
						|
        addr = sqliteVdbeCurrentAddr(v);
 | 
						|
        sqliteVdbeChangeP2(v, jumpInst, addr);
 | 
						|
      }
 | 
						|
      if( pExpr->pLeft ){
 | 
						|
        sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      }
 | 
						|
      if( pExpr->pRight ){
 | 
						|
        sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      }
 | 
						|
      sqliteVdbeResolveLabel(v, expr_end_label);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_RAISE: {
 | 
						|
      if( !pParse->trigStack ){
 | 
						|
        sqliteErrorMsg(pParse,
 | 
						|
                       "RAISE() may only be used within a trigger-program");
 | 
						|
        pParse->nErr++;
 | 
						|
	return;
 | 
						|
      }
 | 
						|
      if( pExpr->iColumn == OE_Rollback ||
 | 
						|
	  pExpr->iColumn == OE_Abort ||
 | 
						|
	  pExpr->iColumn == OE_Fail ){
 | 
						|
	  sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
 | 
						|
                           pExpr->token.z, pExpr->token.n);
 | 
						|
	  sqliteVdbeDequoteP3(v, -1);
 | 
						|
      } else {
 | 
						|
	  assert( pExpr->iColumn == OE_Ignore );
 | 
						|
	  sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
 | 
						|
                           "(IGNORE jump)", 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code that pushes the value of every element of the given
 | 
						|
** expression list onto the stack.  If the includeTypes flag is true,
 | 
						|
** then also push a string that is the datatype of each element onto
 | 
						|
** the stack after the value.
 | 
						|
**
 | 
						|
** Return the number of elements pushed onto the stack.
 | 
						|
*/
 | 
						|
int sqliteExprCodeExprList(
 | 
						|
  Parse *pParse,     /* Parsing context */
 | 
						|
  ExprList *pList,   /* The expression list to be coded */
 | 
						|
  int includeTypes   /* TRUE to put datatypes on the stack too */
 | 
						|
){
 | 
						|
  struct ExprList_item *pItem;
 | 
						|
  int i, n;
 | 
						|
  Vdbe *v;
 | 
						|
  if( pList==0 ) return 0;
 | 
						|
  v = sqliteGetVdbe(pParse);
 | 
						|
  n = pList->nExpr;
 | 
						|
  for(pItem=pList->a, i=0; i<n; i++, pItem++){
 | 
						|
    sqliteExprCode(pParse, pItem->pExpr);
 | 
						|
    if( includeTypes ){
 | 
						|
      sqliteVdbeOp3(v, OP_String, 0, 0, 
 | 
						|
         sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
 | 
						|
         P3_STATIC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return includeTypes ? n*2 : n;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code for a boolean expression such that a jump is made
 | 
						|
** to the label "dest" if the expression is true but execution
 | 
						|
** continues straight thru if the expression is false.
 | 
						|
**
 | 
						|
** If the expression evaluates to NULL (neither true nor false), then
 | 
						|
** take the jump if the jumpIfNull flag is true.
 | 
						|
*/
 | 
						|
void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | 
						|
  Vdbe *v = pParse->pVdbe;
 | 
						|
  int op = 0;
 | 
						|
  if( v==0 || pExpr==0 ) return;
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_LT:       op = OP_Lt;       break;
 | 
						|
    case TK_LE:       op = OP_Le;       break;
 | 
						|
    case TK_GT:       op = OP_Gt;       break;
 | 
						|
    case TK_GE:       op = OP_Ge;       break;
 | 
						|
    case TK_NE:       op = OP_Ne;       break;
 | 
						|
    case TK_EQ:       op = OP_Eq;       break;
 | 
						|
    case TK_ISNULL:   op = OP_IsNull;   break;
 | 
						|
    case TK_NOTNULL:  op = OP_NotNull;  break;
 | 
						|
    default:  break;
 | 
						|
  }
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_AND: {
 | 
						|
      int d2 = sqliteVdbeMakeLabel(v);
 | 
						|
      sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | 
						|
      sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
						|
      sqliteVdbeResolveLabel(v, d2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_OR: {
 | 
						|
      sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
						|
      sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_NOT: {
 | 
						|
      sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_LT:
 | 
						|
    case TK_LE:
 | 
						|
    case TK_GT:
 | 
						|
    case TK_GE:
 | 
						|
    case TK_NE:
 | 
						|
    case TK_EQ: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
      if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
 | 
						|
        op += 6;  /* Convert numeric opcodes to text opcodes */
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, op, jumpIfNull, dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_ISNULL:
 | 
						|
    case TK_NOTNULL: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteVdbeAddOp(v, op, 1, dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_IN: {
 | 
						|
      int addr;
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      addr = sqliteVdbeCurrentAddr(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
 | 
						|
      if( pExpr->pSelect ){
 | 
						|
        sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_BETWEEN: {
 | 
						|
      int addr;
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
 | 
						|
      sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
 | 
						|
      addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
 | 
						|
      sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
 | 
						|
      sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
 | 
						|
      sqliteVdbeAddOp(v, OP_Integer, 0, 0);
 | 
						|
      sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      sqliteExprCode(pParse, pExpr);
 | 
						|
      sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code for a boolean expression such that a jump is made
 | 
						|
** to the label "dest" if the expression is false but execution
 | 
						|
** continues straight thru if the expression is true.
 | 
						|
**
 | 
						|
** If the expression evaluates to NULL (neither true nor false) then
 | 
						|
** jump if jumpIfNull is true or fall through if jumpIfNull is false.
 | 
						|
*/
 | 
						|
void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | 
						|
  Vdbe *v = pParse->pVdbe;
 | 
						|
  int op = 0;
 | 
						|
  if( v==0 || pExpr==0 ) return;
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_LT:       op = OP_Ge;       break;
 | 
						|
    case TK_LE:       op = OP_Gt;       break;
 | 
						|
    case TK_GT:       op = OP_Le;       break;
 | 
						|
    case TK_GE:       op = OP_Lt;       break;
 | 
						|
    case TK_NE:       op = OP_Eq;       break;
 | 
						|
    case TK_EQ:       op = OP_Ne;       break;
 | 
						|
    case TK_ISNULL:   op = OP_NotNull;  break;
 | 
						|
    case TK_NOTNULL:  op = OP_IsNull;   break;
 | 
						|
    default:  break;
 | 
						|
  }
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_AND: {
 | 
						|
      sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
						|
      sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_OR: {
 | 
						|
      int d2 = sqliteVdbeMakeLabel(v);
 | 
						|
      sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | 
						|
      sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
						|
      sqliteVdbeResolveLabel(v, d2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_NOT: {
 | 
						|
      sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_LT:
 | 
						|
    case TK_LE:
 | 
						|
    case TK_GT:
 | 
						|
    case TK_GE:
 | 
						|
    case TK_NE:
 | 
						|
    case TK_EQ: {
 | 
						|
      if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
 | 
						|
        /* Convert numeric comparison opcodes into text comparison opcodes.
 | 
						|
        ** This step depends on the fact that the text comparision opcodes are
 | 
						|
        ** always 6 greater than their corresponding numeric comparison
 | 
						|
        ** opcodes.
 | 
						|
        */
 | 
						|
        assert( OP_Eq+6 == OP_StrEq );
 | 
						|
        op += 6;
 | 
						|
      }
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
      sqliteVdbeAddOp(v, op, jumpIfNull, dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_ISNULL:
 | 
						|
    case TK_NOTNULL: {
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteVdbeAddOp(v, op, 1, dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_IN: {
 | 
						|
      int addr;
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      addr = sqliteVdbeCurrentAddr(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
 | 
						|
      if( pExpr->pSelect ){
 | 
						|
        sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_BETWEEN: {
 | 
						|
      int addr;
 | 
						|
      sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
 | 
						|
      sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
 | 
						|
      addr = sqliteVdbeCurrentAddr(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, dest);
 | 
						|
      sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
 | 
						|
      sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      sqliteExprCode(pParse, pExpr);
 | 
						|
      sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
 | 
						|
** if they are identical and return FALSE if they differ in any way.
 | 
						|
*/
 | 
						|
int sqliteExprCompare(Expr *pA, Expr *pB){
 | 
						|
  int i;
 | 
						|
  if( pA==0 ){
 | 
						|
    return pB==0;
 | 
						|
  }else if( pB==0 ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  if( pA->op!=pB->op ) return 0;
 | 
						|
  if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
 | 
						|
  if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
 | 
						|
  if( pA->pList ){
 | 
						|
    if( pB->pList==0 ) return 0;
 | 
						|
    if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
 | 
						|
    for(i=0; i<pA->pList->nExpr; i++){
 | 
						|
      if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }else if( pB->pList ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  if( pA->pSelect || pB->pSelect ) return 0;
 | 
						|
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
 | 
						|
  if( pA->token.z ){
 | 
						|
    if( pB->token.z==0 ) return 0;
 | 
						|
    if( pB->token.n!=pA->token.n ) return 0;
 | 
						|
    if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
 | 
						|
  }
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add a new element to the pParse->aAgg[] array and return its index.
 | 
						|
*/
 | 
						|
static int appendAggInfo(Parse *pParse){
 | 
						|
  if( (pParse->nAgg & 0x7)==0 ){
 | 
						|
    int amt = pParse->nAgg + 8;
 | 
						|
    AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
 | 
						|
    if( aAgg==0 ){
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
    pParse->aAgg = aAgg;
 | 
						|
  }
 | 
						|
  memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
 | 
						|
  return pParse->nAgg++;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Analyze the given expression looking for aggregate functions and
 | 
						|
** for variables that need to be added to the pParse->aAgg[] array.
 | 
						|
** Make additional entries to the pParse->aAgg[] array as necessary.
 | 
						|
**
 | 
						|
** This routine should only be called after the expression has been
 | 
						|
** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
 | 
						|
**
 | 
						|
** If errors are seen, leave an error message in zErrMsg and return
 | 
						|
** the number of errors.
 | 
						|
*/
 | 
						|
int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
 | 
						|
  int i;
 | 
						|
  AggExpr *aAgg;
 | 
						|
  int nErr = 0;
 | 
						|
 | 
						|
  if( pExpr==0 ) return 0;
 | 
						|
  switch( pExpr->op ){
 | 
						|
    case TK_COLUMN: {
 | 
						|
      aAgg = pParse->aAgg;
 | 
						|
      for(i=0; i<pParse->nAgg; i++){
 | 
						|
        if( aAgg[i].isAgg ) continue;
 | 
						|
        if( aAgg[i].pExpr->iTable==pExpr->iTable
 | 
						|
         && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( i>=pParse->nAgg ){
 | 
						|
        i = appendAggInfo(pParse);
 | 
						|
        if( i<0 ) return 1;
 | 
						|
        pParse->aAgg[i].isAgg = 0;
 | 
						|
        pParse->aAgg[i].pExpr = pExpr;
 | 
						|
      }
 | 
						|
      pExpr->iAgg = i;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TK_AGG_FUNCTION: {
 | 
						|
      aAgg = pParse->aAgg;
 | 
						|
      for(i=0; i<pParse->nAgg; i++){
 | 
						|
        if( !aAgg[i].isAgg ) continue;
 | 
						|
        if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( i>=pParse->nAgg ){
 | 
						|
        i = appendAggInfo(pParse);
 | 
						|
        if( i<0 ) return 1;
 | 
						|
        pParse->aAgg[i].isAgg = 1;
 | 
						|
        pParse->aAgg[i].pExpr = pExpr;
 | 
						|
        pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
 | 
						|
             pExpr->token.z, pExpr->token.n,
 | 
						|
             pExpr->pList ? pExpr->pList->nExpr : 0, 0);
 | 
						|
      }
 | 
						|
      pExpr->iAgg = i;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      if( pExpr->pLeft ){
 | 
						|
        nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
 | 
						|
      }
 | 
						|
      if( nErr==0 && pExpr->pRight ){
 | 
						|
        nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
 | 
						|
      }
 | 
						|
      if( nErr==0 && pExpr->pList ){
 | 
						|
        int n = pExpr->pList->nExpr;
 | 
						|
        int i;
 | 
						|
        for(i=0; nErr==0 && i<n; i++){
 | 
						|
          nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nErr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Locate a user function given a name and a number of arguments.
 | 
						|
** Return a pointer to the FuncDef structure that defines that
 | 
						|
** function, or return NULL if the function does not exist.
 | 
						|
**
 | 
						|
** If the createFlag argument is true, then a new (blank) FuncDef
 | 
						|
** structure is created and liked into the "db" structure if a
 | 
						|
** no matching function previously existed.  When createFlag is true
 | 
						|
** and the nArg parameter is -1, then only a function that accepts
 | 
						|
** any number of arguments will be returned.
 | 
						|
**
 | 
						|
** If createFlag is false and nArg is -1, then the first valid
 | 
						|
** function found is returned.  A function is valid if either xFunc
 | 
						|
** or xStep is non-zero.
 | 
						|
*/
 | 
						|
FuncDef *sqliteFindFunction(
 | 
						|
  sqlite *db,        /* An open database */
 | 
						|
  const char *zName, /* Name of the function.  Not null-terminated */
 | 
						|
  int nName,         /* Number of characters in the name */
 | 
						|
  int nArg,          /* Number of arguments.  -1 means any number */
 | 
						|
  int createFlag     /* Create new entry if true and does not otherwise exist */
 | 
						|
){
 | 
						|
  FuncDef *pFirst, *p, *pMaybe;
 | 
						|
  pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
 | 
						|
  if( p && !createFlag && nArg<0 ){
 | 
						|
    while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
 | 
						|
    return p;
 | 
						|
  }
 | 
						|
  pMaybe = 0;
 | 
						|
  while( p && p->nArg!=nArg ){
 | 
						|
    if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
 | 
						|
    p = p->pNext;
 | 
						|
  }
 | 
						|
  if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  if( p==0 && pMaybe ){
 | 
						|
    assert( createFlag==0 );
 | 
						|
    return pMaybe;
 | 
						|
  }
 | 
						|
  if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
 | 
						|
    p->nArg = nArg;
 | 
						|
    p->pNext = pFirst;
 | 
						|
    p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
 | 
						|
    sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
 | 
						|
  }
 | 
						|
  return p;
 | 
						|
}
 |