Files correlati : Ricompilazione Demo : [ ] Commento :Primo commit del modulo git-svn-id: svn://10.65.10.50/trunk@13958 c028cbd2-c16b-5b4b-a496-9718f37d4682
		
			
				
	
	
		
			868 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			868 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
 * jquant1.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 1991-1996, Thomas G. Lane.
 | 
						|
 * This file is part of the Independent JPEG Group's software.
 | 
						|
 * For conditions of distribution and use, see the accompanying README file.
 | 
						|
 *
 | 
						|
 * This file contains 1-pass color quantization (color mapping) routines.
 | 
						|
 * These routines provide mapping to a fixed color map using equally spaced
 | 
						|
 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
 | 
						|
 */
 | 
						|
 | 
						|
#define JPEG_INTERNALS
 | 
						|
#include "jinclude.h"
 | 
						|
#include "jpeglib.h"
 | 
						|
 | 
						|
#ifdef QUANT_1PASS_SUPPORTED
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * The main purpose of 1-pass quantization is to provide a fast, if not very
 | 
						|
 * high quality, colormapped output capability.  A 2-pass quantizer usually
 | 
						|
 * gives better visual quality; however, for quantized grayscale output this
 | 
						|
 * quantizer is perfectly adequate.  Dithering is highly recommended with this
 | 
						|
 * quantizer, though you can turn it off if you really want to.
 | 
						|
 *
 | 
						|
 * In 1-pass quantization the colormap must be chosen in advance of seeing the
 | 
						|
 * image.  We use a map consisting of all combinations of Ncolors[i] color
 | 
						|
 * values for the i'th component.  The Ncolors[] values are chosen so that
 | 
						|
 * their product, the total number of colors, is no more than that requested.
 | 
						|
 * (In most cases, the product will be somewhat less.)
 | 
						|
 *
 | 
						|
 * Since the colormap is orthogonal, the representative value for each color
 | 
						|
 * component can be determined without considering the other components;
 | 
						|
 * then these indexes can be combined into a colormap index by a standard
 | 
						|
 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
 | 
						|
 * can be precalculated and stored in the lookup table colorindex[].
 | 
						|
 * colorindex[i][j] maps pixel value j in component i to the nearest
 | 
						|
 * representative value (grid plane) for that component; this index is
 | 
						|
 * multiplied by the array stride for component i, so that the
 | 
						|
 * index of the colormap entry closest to a given pixel value is just
 | 
						|
 *    sum( colorindex[component-number][pixel-component-value] )
 | 
						|
 * Aside from being fast, this scheme allows for variable spacing between
 | 
						|
 * representative values with no additional lookup cost.
 | 
						|
 *
 | 
						|
 * If gamma correction has been applied in color conversion, it might be wise
 | 
						|
 * to adjust the color grid spacing so that the representative colors are
 | 
						|
 * equidistant in linear space.  At this writing, gamma correction is not
 | 
						|
 * implemented by jdcolor, so nothing is done here.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/* Declarations for ordered dithering.
 | 
						|
 *
 | 
						|
 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
 | 
						|
 * dithering is described in many references, for instance Dale Schumacher's
 | 
						|
 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
 | 
						|
 * In place of Schumacher's comparisons against a "threshold" value, we add a
 | 
						|
 * "dither" value to the input pixel and then round the result to the nearest
 | 
						|
 * output value.  The dither value is equivalent to (0.5 - threshold) times
 | 
						|
 * the distance between output values.  For ordered dithering, we assume that
 | 
						|
 * the output colors are equally spaced; if not, results will probably be
 | 
						|
 * worse, since the dither may be too much or too little at a given point.
 | 
						|
 *
 | 
						|
 * The normal calculation would be to form pixel value + dither, range-limit
 | 
						|
 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
 | 
						|
 * We can skip the separate range-limiting step by extending the colorindex
 | 
						|
 * table in both directions.
 | 
						|
 */
 | 
						|
 | 
						|
#define ODITHER_SIZE  16	/* dimension of dither matrix */
 | 
						|
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
 | 
						|
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
 | 
						|
#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
 | 
						|
 | 
						|
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
 | 
						|
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
 | 
						|
 | 
						|
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
 | 
						|
  /* Bayer's order-4 dither array.  Generated by the code given in
 | 
						|
   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
 | 
						|
   * The values in this array must range from 0 to ODITHER_CELLS-1.
 | 
						|
   */
 | 
						|
  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
 | 
						|
  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
 | 
						|
  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
 | 
						|
  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
 | 
						|
  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
 | 
						|
  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
 | 
						|
  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
 | 
						|
  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
 | 
						|
  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
 | 
						|
  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
 | 
						|
  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
 | 
						|
  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
 | 
						|
  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
 | 
						|
  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
 | 
						|
  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
 | 
						|
  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* Declarations for Floyd-Steinberg dithering.
 | 
						|
 *
 | 
						|
 * Errors are accumulated into the array fserrors[], at a resolution of
 | 
						|
 * 1/16th of a pixel count.  The error at a given pixel is propagated
 | 
						|
 * to its not-yet-processed neighbors using the standard F-S fractions,
 | 
						|
 *		...	(here)	7/16
 | 
						|
 *		3/16	5/16	1/16
 | 
						|
 * We work left-to-right on even rows, right-to-left on odd rows.
 | 
						|
 *
 | 
						|
 * We can get away with a single array (holding one row's worth of errors)
 | 
						|
 * by using it to store the current row's errors at pixel columns not yet
 | 
						|
 * processed, but the next row's errors at columns already processed.  We
 | 
						|
 * need only a few extra variables to hold the errors immediately around the
 | 
						|
 * current column.  (If we are lucky, those variables are in registers, but
 | 
						|
 * even if not, they're probably cheaper to access than array elements are.)
 | 
						|
 *
 | 
						|
 * The fserrors[] array is indexed [component#][position].
 | 
						|
 * We provide (#columns + 2) entries per component; the extra entry at each
 | 
						|
 * end saves us from special-casing the first and last pixels.
 | 
						|
 *
 | 
						|
 * Note: on a wide image, we might not have enough room in a PC's near data
 | 
						|
 * segment to hold the error array; so it is allocated with alloc_large.
 | 
						|
 */
 | 
						|
 | 
						|
#if BITS_IN_JSAMPLE == 8
 | 
						|
typedef INT16 FSERROR;		/* 16 bits should be enough */
 | 
						|
typedef int LOCFSERROR;		/* use 'int' for calculation temps */
 | 
						|
#else
 | 
						|
typedef INT32 FSERROR;		/* may need more than 16 bits */
 | 
						|
typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
 | 
						|
#endif
 | 
						|
 | 
						|
typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
 | 
						|
 | 
						|
 | 
						|
/* Private subobject */
 | 
						|
 | 
						|
#define MAX_Q_COMPS 4		/* max components I can handle */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  struct jpeg_color_quantizer pub; /* public fields */
 | 
						|
 | 
						|
  /* Initially allocated colormap is saved here */
 | 
						|
  JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
 | 
						|
  int sv_actual;		/* number of entries in use */
 | 
						|
 | 
						|
  JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
 | 
						|
  /* colorindex[i][j] = index of color closest to pixel value j in component i,
 | 
						|
   * premultiplied as described above.  Since colormap indexes must fit into
 | 
						|
   * JSAMPLEs, the entries of this array will too.
 | 
						|
   */
 | 
						|
  boolean is_padded;		/* is the colorindex padded for odither? */
 | 
						|
 | 
						|
  int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
 | 
						|
 | 
						|
  /* Variables for ordered dithering */
 | 
						|
  int row_index;		/* cur row's vertical index in dither matrix */
 | 
						|
  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
 | 
						|
 | 
						|
  /* Variables for Floyd-Steinberg dithering */
 | 
						|
  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
 | 
						|
  boolean on_odd_row;		/* flag to remember which row we are on */
 | 
						|
} my_cquantizer;
 | 
						|
 | 
						|
typedef my_cquantizer * my_cquantize_ptr;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Policy-making subroutines for create_colormap and create_colorindex.
 | 
						|
 * These routines determine the colormap to be used.  The rest of the module
 | 
						|
 * only assumes that the colormap is orthogonal.
 | 
						|
 *
 | 
						|
 *  * select_ncolors decides how to divvy up the available colors
 | 
						|
 *    among the components.
 | 
						|
 *  * output_value defines the set of representative values for a component.
 | 
						|
 *  * largest_input_value defines the mapping from input values to
 | 
						|
 *    representative values for a component.
 | 
						|
 * Note that the latter two routines may impose different policies for
 | 
						|
 * different components, though this is not currently done.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
LOCAL(int)
 | 
						|
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
 | 
						|
/* Determine allocation of desired colors to components, */
 | 
						|
/* and fill in Ncolors[] array to indicate choice. */
 | 
						|
/* Return value is total number of colors (product of Ncolors[] values). */
 | 
						|
{
 | 
						|
  int nc = cinfo->out_color_components; /* number of color components */
 | 
						|
  int max_colors = cinfo->desired_number_of_colors;
 | 
						|
  int total_colors, iroot, i, j;
 | 
						|
  boolean changed;
 | 
						|
  long temp;
 | 
						|
  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
 | 
						|
 | 
						|
  /* We can allocate at least the nc'th root of max_colors per component. */
 | 
						|
  /* Compute floor(nc'th root of max_colors). */
 | 
						|
  iroot = 1;
 | 
						|
  do {
 | 
						|
    iroot++;
 | 
						|
    temp = iroot;		/* set temp = iroot ** nc */
 | 
						|
    for (i = 1; i < nc; i++)
 | 
						|
      temp *= iroot;
 | 
						|
  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
 | 
						|
  iroot--;			/* now iroot = floor(root) */
 | 
						|
 | 
						|
  /* Must have at least 2 color values per component */
 | 
						|
  if (iroot < 2)
 | 
						|
    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
 | 
						|
 | 
						|
  /* Initialize to iroot color values for each component */
 | 
						|
  total_colors = 1;
 | 
						|
  for (i = 0; i < nc; i++) {
 | 
						|
    Ncolors[i] = iroot;
 | 
						|
    total_colors *= iroot;
 | 
						|
  }
 | 
						|
  /* We may be able to increment the count for one or more components without
 | 
						|
   * exceeding max_colors, though we know not all can be incremented.
 | 
						|
   * Sometimes, the first component can be incremented more than once!
 | 
						|
   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
 | 
						|
   * In RGB colorspace, try to increment G first, then R, then B.
 | 
						|
   */
 | 
						|
  do {
 | 
						|
    changed = FALSE;
 | 
						|
    for (i = 0; i < nc; i++) {
 | 
						|
      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
 | 
						|
      /* calculate new total_colors if Ncolors[j] is incremented */
 | 
						|
      temp = total_colors / Ncolors[j];
 | 
						|
      temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
 | 
						|
      if (temp > (long) max_colors)
 | 
						|
	break;			/* won't fit, done with this pass */
 | 
						|
      Ncolors[j]++;		/* OK, apply the increment */
 | 
						|
      total_colors = (int) temp;
 | 
						|
      changed = TRUE;
 | 
						|
    }
 | 
						|
  } while (changed);
 | 
						|
 | 
						|
  return total_colors;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
LOCAL(int)
 | 
						|
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
 | 
						|
/* Return j'th output value, where j will range from 0 to maxj */
 | 
						|
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
 | 
						|
{
 | 
						|
  /* We always provide values 0 and MAXJSAMPLE for each component;
 | 
						|
   * any additional values are equally spaced between these limits.
 | 
						|
   * (Forcing the upper and lower values to the limits ensures that
 | 
						|
   * dithering can't produce a color outside the selected gamut.)
 | 
						|
   */
 | 
						|
  (void) cinfo;
 | 
						|
  (void) ci;
 | 
						|
 | 
						|
  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
LOCAL(int)
 | 
						|
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
 | 
						|
/* Return largest input value that should map to j'th output value */
 | 
						|
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
 | 
						|
{
 | 
						|
  (void) cinfo;
 | 
						|
  (void) ci;
 | 
						|
 | 
						|
  /* Breakpoints are halfway between values returned by output_value */
 | 
						|
  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Create the colormap.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(void)
 | 
						|
create_colormap (j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  JSAMPARRAY colormap;		/* Created colormap */
 | 
						|
  int total_colors;		/* Number of distinct output colors */
 | 
						|
  int i,j,k, nci, blksize, blkdist, ptr, val;
 | 
						|
 | 
						|
  /* Select number of colors for each component */
 | 
						|
  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
 | 
						|
 | 
						|
  /* Report selected color counts */
 | 
						|
  if (cinfo->out_color_components == 3)
 | 
						|
    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
 | 
						|
	     total_colors, cquantize->Ncolors[0],
 | 
						|
	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
 | 
						|
  else
 | 
						|
    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
 | 
						|
 | 
						|
  /* Allocate and fill in the colormap. */
 | 
						|
  /* The colors are ordered in the map in standard row-major order, */
 | 
						|
  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
 | 
						|
 | 
						|
  colormap = (*cinfo->mem->alloc_sarray)
 | 
						|
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
						|
     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
 | 
						|
 | 
						|
  /* blksize is number of adjacent repeated entries for a component */
 | 
						|
  /* blkdist is distance between groups of identical entries for a component */
 | 
						|
  blkdist = total_colors;
 | 
						|
 | 
						|
  for (i = 0; i < cinfo->out_color_components; i++) {
 | 
						|
    /* fill in colormap entries for i'th color component */
 | 
						|
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
 | 
						|
    blksize = blkdist / nci;
 | 
						|
    for (j = 0; j < nci; j++) {
 | 
						|
      /* Compute j'th output value (out of nci) for component */
 | 
						|
      val = output_value(cinfo, i, j, nci-1);
 | 
						|
      /* Fill in all colormap entries that have this value of this component */
 | 
						|
      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
 | 
						|
	/* fill in blksize entries beginning at ptr */
 | 
						|
	for (k = 0; k < blksize; k++)
 | 
						|
	  colormap[i][ptr+k] = (JSAMPLE) val;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    blkdist = blksize;		/* blksize of this color is blkdist of next */
 | 
						|
  }
 | 
						|
 | 
						|
  /* Save the colormap in private storage,
 | 
						|
   * where it will survive color quantization mode changes.
 | 
						|
   */
 | 
						|
  cquantize->sv_colormap = colormap;
 | 
						|
  cquantize->sv_actual = total_colors;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Create the color index table.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(void)
 | 
						|
create_colorindex (j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  JSAMPROW indexptr;
 | 
						|
  int i,j,k, nci, blksize, val, pad;
 | 
						|
 | 
						|
  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
 | 
						|
   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
 | 
						|
   * This is not necessary in the other dithering modes.  However, we
 | 
						|
   * flag whether it was done in case user changes dithering mode.
 | 
						|
   */
 | 
						|
  if (cinfo->dither_mode == JDITHER_ORDERED) {
 | 
						|
    pad = MAXJSAMPLE*2;
 | 
						|
    cquantize->is_padded = TRUE;
 | 
						|
  } else {
 | 
						|
    pad = 0;
 | 
						|
    cquantize->is_padded = FALSE;
 | 
						|
  }
 | 
						|
 | 
						|
  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
 | 
						|
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
						|
     (JDIMENSION) (MAXJSAMPLE+1 + pad),
 | 
						|
     (JDIMENSION) cinfo->out_color_components);
 | 
						|
 | 
						|
  /* blksize is number of adjacent repeated entries for a component */
 | 
						|
  blksize = cquantize->sv_actual;
 | 
						|
 | 
						|
  for (i = 0; i < cinfo->out_color_components; i++) {
 | 
						|
    /* fill in colorindex entries for i'th color component */
 | 
						|
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
 | 
						|
    blksize = blksize / nci;
 | 
						|
 | 
						|
    /* adjust colorindex pointers to provide padding at negative indexes. */
 | 
						|
    if (pad)
 | 
						|
      cquantize->colorindex[i] += MAXJSAMPLE;
 | 
						|
 | 
						|
    /* in loop, val = index of current output value, */
 | 
						|
    /* and k = largest j that maps to current val */
 | 
						|
    indexptr = cquantize->colorindex[i];
 | 
						|
    val = 0;
 | 
						|
    k = largest_input_value(cinfo, i, 0, nci-1);
 | 
						|
    for (j = 0; j <= MAXJSAMPLE; j++) {
 | 
						|
      while (j > k)		/* advance val if past boundary */
 | 
						|
	k = largest_input_value(cinfo, i, ++val, nci-1);
 | 
						|
      /* premultiply so that no multiplication needed in main processing */
 | 
						|
      indexptr[j] = (JSAMPLE) (val * blksize);
 | 
						|
    }
 | 
						|
    /* Pad at both ends if necessary */
 | 
						|
    if (pad)
 | 
						|
      for (j = 1; j <= MAXJSAMPLE; j++) {
 | 
						|
	indexptr[-j] = indexptr[0];
 | 
						|
	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Create an ordered-dither array for a component having ncolors
 | 
						|
 * distinct output values.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(ODITHER_MATRIX_PTR)
 | 
						|
make_odither_array (j_decompress_ptr cinfo, int ncolors)
 | 
						|
{
 | 
						|
  ODITHER_MATRIX_PTR odither;
 | 
						|
  int j,k;
 | 
						|
  INT32 num,den;
 | 
						|
 | 
						|
  odither = (ODITHER_MATRIX_PTR)
 | 
						|
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
						|
				SIZEOF(ODITHER_MATRIX));
 | 
						|
  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
 | 
						|
   * Hence the dither value for the matrix cell with fill order f
 | 
						|
   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
 | 
						|
   * On 16-bit-int machine, be careful to avoid overflow.
 | 
						|
   */
 | 
						|
  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
 | 
						|
  for (j = 0; j < ODITHER_SIZE; j++) {
 | 
						|
    for (k = 0; k < ODITHER_SIZE; k++) {
 | 
						|
      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
 | 
						|
	    * MAXJSAMPLE;
 | 
						|
      /* Ensure round towards zero despite C's lack of consistency
 | 
						|
       * about rounding negative values in integer division...
 | 
						|
       */
 | 
						|
      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return odither;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Create the ordered-dither tables.
 | 
						|
 * Components having the same number of representative colors may 
 | 
						|
 * share a dither table.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(void)
 | 
						|
create_odither_tables (j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  ODITHER_MATRIX_PTR odither;
 | 
						|
  int i, j, nci;
 | 
						|
 | 
						|
  for (i = 0; i < cinfo->out_color_components; i++) {
 | 
						|
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
 | 
						|
    odither = NULL;		/* search for matching prior component */
 | 
						|
    for (j = 0; j < i; j++) {
 | 
						|
      if (nci == cquantize->Ncolors[j]) {
 | 
						|
	odither = cquantize->odither[j];
 | 
						|
	break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (odither == NULL)	/* need a new table? */
 | 
						|
      odither = make_odither_array(cinfo, nci);
 | 
						|
    cquantize->odither[i] = odither;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Map some rows of pixels to the output colormapped representation.
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 | 
						|
		JSAMPARRAY output_buf, int num_rows)
 | 
						|
/* General case, no dithering */
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  JSAMPARRAY colorindex = cquantize->colorindex;
 | 
						|
  register int pixcode, ci;
 | 
						|
  register JSAMPROW ptrin, ptrout;
 | 
						|
  int row;
 | 
						|
  JDIMENSION col;
 | 
						|
  JDIMENSION width = cinfo->output_width;
 | 
						|
  register int nc = cinfo->out_color_components;
 | 
						|
 | 
						|
  for (row = 0; row < num_rows; row++) {
 | 
						|
    ptrin = input_buf[row];
 | 
						|
    ptrout = output_buf[row];
 | 
						|
    for (col = width; col > 0; col--) {
 | 
						|
      pixcode = 0;
 | 
						|
      for (ci = 0; ci < nc; ci++) {
 | 
						|
	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
 | 
						|
      }
 | 
						|
      *ptrout++ = (JSAMPLE) pixcode;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 | 
						|
		 JSAMPARRAY output_buf, int num_rows)
 | 
						|
/* Fast path for out_color_components==3, no dithering */
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  register int pixcode;
 | 
						|
  register JSAMPROW ptrin, ptrout;
 | 
						|
  JSAMPROW colorindex0 = cquantize->colorindex[0];
 | 
						|
  JSAMPROW colorindex1 = cquantize->colorindex[1];
 | 
						|
  JSAMPROW colorindex2 = cquantize->colorindex[2];
 | 
						|
  int row;
 | 
						|
  JDIMENSION col;
 | 
						|
  JDIMENSION width = cinfo->output_width;
 | 
						|
 | 
						|
  for (row = 0; row < num_rows; row++) {
 | 
						|
    ptrin = input_buf[row];
 | 
						|
    ptrout = output_buf[row];
 | 
						|
    for (col = width; col > 0; col--) {
 | 
						|
      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
 | 
						|
      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
 | 
						|
      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
 | 
						|
      *ptrout++ = (JSAMPLE) pixcode;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 | 
						|
		     JSAMPARRAY output_buf, int num_rows)
 | 
						|
/* General case, with ordered dithering */
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  register JSAMPROW input_ptr;
 | 
						|
  register JSAMPROW output_ptr;
 | 
						|
  JSAMPROW colorindex_ci;
 | 
						|
  int * dither;			/* points to active row of dither matrix */
 | 
						|
  int row_index, col_index;	/* current indexes into dither matrix */
 | 
						|
  int nc = cinfo->out_color_components;
 | 
						|
  int ci;
 | 
						|
  int row;
 | 
						|
  JDIMENSION col;
 | 
						|
  JDIMENSION width = cinfo->output_width;
 | 
						|
 | 
						|
  for (row = 0; row < num_rows; row++) {
 | 
						|
    /* Initialize output values to 0 so can process components separately */
 | 
						|
    jzero_far((void FAR *) output_buf[row],
 | 
						|
	      (size_t) (width * SIZEOF(JSAMPLE)));
 | 
						|
    row_index = cquantize->row_index;
 | 
						|
    for (ci = 0; ci < nc; ci++) {
 | 
						|
      input_ptr = input_buf[row] + ci;
 | 
						|
      output_ptr = output_buf[row];
 | 
						|
      colorindex_ci = cquantize->colorindex[ci];
 | 
						|
      dither = cquantize->odither[ci][row_index];
 | 
						|
      col_index = 0;
 | 
						|
 | 
						|
      for (col = width; col > 0; col--) {
 | 
						|
	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
 | 
						|
	 * select output value, accumulate into output code for this pixel.
 | 
						|
	 * Range-limiting need not be done explicitly, as we have extended
 | 
						|
	 * the colorindex table to produce the right answers for out-of-range
 | 
						|
	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
 | 
						|
	 * required amount of padding.
 | 
						|
	 */
 | 
						|
	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
 | 
						|
	input_ptr += nc;
 | 
						|
	output_ptr++;
 | 
						|
	col_index = (col_index + 1) & ODITHER_MASK;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* Advance row index for next row */
 | 
						|
    row_index = (row_index + 1) & ODITHER_MASK;
 | 
						|
    cquantize->row_index = row_index;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 | 
						|
		      JSAMPARRAY output_buf, int num_rows)
 | 
						|
/* Fast path for out_color_components==3, with ordered dithering */
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  register int pixcode;
 | 
						|
  register JSAMPROW input_ptr;
 | 
						|
  register JSAMPROW output_ptr;
 | 
						|
  JSAMPROW colorindex0 = cquantize->colorindex[0];
 | 
						|
  JSAMPROW colorindex1 = cquantize->colorindex[1];
 | 
						|
  JSAMPROW colorindex2 = cquantize->colorindex[2];
 | 
						|
  int * dither0;		/* points to active row of dither matrix */
 | 
						|
  int * dither1;
 | 
						|
  int * dither2;
 | 
						|
  int row_index, col_index;	/* current indexes into dither matrix */
 | 
						|
  int row;
 | 
						|
  JDIMENSION col;
 | 
						|
  JDIMENSION width = cinfo->output_width;
 | 
						|
 | 
						|
  for (row = 0; row < num_rows; row++) {
 | 
						|
    row_index = cquantize->row_index;
 | 
						|
    input_ptr = input_buf[row];
 | 
						|
    output_ptr = output_buf[row];
 | 
						|
    dither0 = cquantize->odither[0][row_index];
 | 
						|
    dither1 = cquantize->odither[1][row_index];
 | 
						|
    dither2 = cquantize->odither[2][row_index];
 | 
						|
    col_index = 0;
 | 
						|
 | 
						|
    for (col = width; col > 0; col--) {
 | 
						|
      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
 | 
						|
					dither0[col_index]]);
 | 
						|
      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
 | 
						|
					dither1[col_index]]);
 | 
						|
      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
 | 
						|
					dither2[col_index]]);
 | 
						|
      *output_ptr++ = (JSAMPLE) pixcode;
 | 
						|
      col_index = (col_index + 1) & ODITHER_MASK;
 | 
						|
    }
 | 
						|
    row_index = (row_index + 1) & ODITHER_MASK;
 | 
						|
    cquantize->row_index = row_index;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 | 
						|
		    JSAMPARRAY output_buf, int num_rows)
 | 
						|
/* General case, with Floyd-Steinberg dithering */
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  register LOCFSERROR cur;	/* current error or pixel value */
 | 
						|
  LOCFSERROR belowerr;		/* error for pixel below cur */
 | 
						|
  LOCFSERROR bpreverr;		/* error for below/prev col */
 | 
						|
  LOCFSERROR bnexterr;		/* error for below/next col */
 | 
						|
  LOCFSERROR delta;
 | 
						|
  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
 | 
						|
  register JSAMPROW input_ptr;
 | 
						|
  register JSAMPROW output_ptr;
 | 
						|
  JSAMPROW colorindex_ci;
 | 
						|
  JSAMPROW colormap_ci;
 | 
						|
  int pixcode;
 | 
						|
  int nc = cinfo->out_color_components;
 | 
						|
  int dir;			/* 1 for left-to-right, -1 for right-to-left */
 | 
						|
  int dirnc;			/* dir * nc */
 | 
						|
  int ci;
 | 
						|
  int row;
 | 
						|
  JDIMENSION col;
 | 
						|
  JDIMENSION width = cinfo->output_width;
 | 
						|
  JSAMPLE *range_limit = cinfo->sample_range_limit;
 | 
						|
  SHIFT_TEMPS
 | 
						|
 | 
						|
  for (row = 0; row < num_rows; row++) {
 | 
						|
    /* Initialize output values to 0 so can process components separately */
 | 
						|
    jzero_far((void FAR *) output_buf[row],
 | 
						|
	      (size_t) (width * SIZEOF(JSAMPLE)));
 | 
						|
    for (ci = 0; ci < nc; ci++) {
 | 
						|
      input_ptr = input_buf[row] + ci;
 | 
						|
      output_ptr = output_buf[row];
 | 
						|
      if (cquantize->on_odd_row) {
 | 
						|
	/* work right to left in this row */
 | 
						|
	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
 | 
						|
	output_ptr += width-1;
 | 
						|
	dir = -1;
 | 
						|
	dirnc = -nc;
 | 
						|
	/* => entry after last column */
 | 
						|
	errorptr = cquantize->fserrors[ci] + (width+1);
 | 
						|
      } else {
 | 
						|
	/* work left to right in this row */
 | 
						|
	dir = 1;
 | 
						|
	dirnc = nc;
 | 
						|
	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
 | 
						|
      }
 | 
						|
      colorindex_ci = cquantize->colorindex[ci];
 | 
						|
      colormap_ci = cquantize->sv_colormap[ci];
 | 
						|
      /* Preset error values: no error propagated to first pixel from left */
 | 
						|
      cur = 0;
 | 
						|
      /* and no error propagated to row below yet */
 | 
						|
      belowerr = bpreverr = 0;
 | 
						|
 | 
						|
      for (col = width; col > 0; col--) {
 | 
						|
	/* cur holds the error propagated from the previous pixel on the
 | 
						|
	 * current line.  Add the error propagated from the previous line
 | 
						|
	 * to form the complete error correction term for this pixel, and
 | 
						|
	 * round the error term (which is expressed * 16) to an integer.
 | 
						|
	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
 | 
						|
	 * for either sign of the error value.
 | 
						|
	 * Note: errorptr points to *previous* column's array entry.
 | 
						|
	 */
 | 
						|
	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
 | 
						|
	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
 | 
						|
	 * The maximum error is +- MAXJSAMPLE; this sets the required size
 | 
						|
	 * of the range_limit array.
 | 
						|
	 */
 | 
						|
	cur += GETJSAMPLE(*input_ptr);
 | 
						|
	cur = GETJSAMPLE(range_limit[cur]);
 | 
						|
	/* Select output value, accumulate into output code for this pixel */
 | 
						|
	pixcode = GETJSAMPLE(colorindex_ci[cur]);
 | 
						|
	*output_ptr += (JSAMPLE) pixcode;
 | 
						|
	/* Compute actual representation error at this pixel */
 | 
						|
	/* Note: we can do this even though we don't have the final */
 | 
						|
	/* pixel code, because the colormap is orthogonal. */
 | 
						|
	cur -= GETJSAMPLE(colormap_ci[pixcode]);
 | 
						|
	/* Compute error fractions to be propagated to adjacent pixels.
 | 
						|
	 * Add these into the running sums, and simultaneously shift the
 | 
						|
	 * next-line error sums left by 1 column.
 | 
						|
	 */
 | 
						|
	bnexterr = cur;
 | 
						|
	delta = cur * 2;
 | 
						|
	cur += delta;		/* form error * 3 */
 | 
						|
	errorptr[0] = (FSERROR) (bpreverr + cur);
 | 
						|
	cur += delta;		/* form error * 5 */
 | 
						|
	bpreverr = belowerr + cur;
 | 
						|
	belowerr = bnexterr;
 | 
						|
	cur += delta;		/* form error * 7 */
 | 
						|
	/* At this point cur contains the 7/16 error value to be propagated
 | 
						|
	 * to the next pixel on the current line, and all the errors for the
 | 
						|
	 * next line have been shifted over. We are therefore ready to move on.
 | 
						|
	 */
 | 
						|
	input_ptr += dirnc;	/* advance input ptr to next column */
 | 
						|
	output_ptr += dir;	/* advance output ptr to next column */
 | 
						|
	errorptr += dir;	/* advance errorptr to current column */
 | 
						|
      }
 | 
						|
      /* Post-loop cleanup: we must unload the final error value into the
 | 
						|
       * final fserrors[] entry.  Note we need not unload belowerr because
 | 
						|
       * it is for the dummy column before or after the actual array.
 | 
						|
       */
 | 
						|
      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
 | 
						|
    }
 | 
						|
    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate workspace for Floyd-Steinberg errors.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(void)
 | 
						|
alloc_fs_workspace (j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  size_t arraysize;
 | 
						|
  int i;
 | 
						|
 | 
						|
  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
 | 
						|
  for (i = 0; i < cinfo->out_color_components; i++) {
 | 
						|
    cquantize->fserrors[i] = (FSERRPTR)
 | 
						|
      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize for one-pass color quantization.
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 | 
						|
  size_t arraysize;
 | 
						|
  int i;
 | 
						|
 | 
						|
  (void) is_pre_scan;
 | 
						|
 | 
						|
  /* Install my colormap. */
 | 
						|
  cinfo->colormap = cquantize->sv_colormap;
 | 
						|
  cinfo->actual_number_of_colors = cquantize->sv_actual;
 | 
						|
 | 
						|
  /* Initialize for desired dithering mode. */
 | 
						|
  switch (cinfo->dither_mode) {
 | 
						|
  case JDITHER_NONE:
 | 
						|
    if (cinfo->out_color_components == 3)
 | 
						|
      cquantize->pub.color_quantize = color_quantize3;
 | 
						|
    else
 | 
						|
      cquantize->pub.color_quantize = color_quantize;
 | 
						|
    break;
 | 
						|
  case JDITHER_ORDERED:
 | 
						|
    if (cinfo->out_color_components == 3)
 | 
						|
      cquantize->pub.color_quantize = quantize3_ord_dither;
 | 
						|
    else
 | 
						|
      cquantize->pub.color_quantize = quantize_ord_dither;
 | 
						|
    cquantize->row_index = 0;	/* initialize state for ordered dither */
 | 
						|
    /* If user changed to ordered dither from another mode,
 | 
						|
     * we must recreate the color index table with padding.
 | 
						|
     * This will cost extra space, but probably isn't very likely.
 | 
						|
     */
 | 
						|
    if (! cquantize->is_padded)
 | 
						|
      create_colorindex(cinfo);
 | 
						|
    /* Create ordered-dither tables if we didn't already. */
 | 
						|
    if (cquantize->odither[0] == NULL)
 | 
						|
      create_odither_tables(cinfo);
 | 
						|
    break;
 | 
						|
  case JDITHER_FS:
 | 
						|
    cquantize->pub.color_quantize = quantize_fs_dither;
 | 
						|
    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
 | 
						|
    /* Allocate Floyd-Steinberg workspace if didn't already. */
 | 
						|
    if (cquantize->fserrors[0] == NULL)
 | 
						|
      alloc_fs_workspace(cinfo);
 | 
						|
    /* Initialize the propagated errors to zero. */
 | 
						|
    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
 | 
						|
    for (i = 0; i < cinfo->out_color_components; i++)
 | 
						|
      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    ERREXIT(cinfo, JERR_NOT_COMPILED);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Finish up at the end of the pass.
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
finish_pass_1_quant (j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  (void) cinfo;
 | 
						|
 | 
						|
  /* no work in 1-pass case */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Switch to a new external colormap between output passes.
 | 
						|
 * Shouldn't get to this module!
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
new_color_map_1_quant (j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  ERREXIT(cinfo, JERR_MODE_CHANGE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Module initialization routine for 1-pass color quantization.
 | 
						|
 */
 | 
						|
 | 
						|
GLOBAL(void)
 | 
						|
jinit_1pass_quantizer (j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  my_cquantize_ptr cquantize;
 | 
						|
 | 
						|
  cquantize = (my_cquantize_ptr)
 | 
						|
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
						|
				SIZEOF(my_cquantizer));
 | 
						|
  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
 | 
						|
  cquantize->pub.start_pass = start_pass_1_quant;
 | 
						|
  cquantize->pub.finish_pass = finish_pass_1_quant;
 | 
						|
  cquantize->pub.new_color_map = new_color_map_1_quant;
 | 
						|
  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
 | 
						|
  cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
 | 
						|
 | 
						|
  /* Make sure my internal arrays won't overflow */
 | 
						|
  if (cinfo->out_color_components > MAX_Q_COMPS)
 | 
						|
    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
 | 
						|
  /* Make sure colormap indexes can be represented by JSAMPLEs */
 | 
						|
  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
 | 
						|
    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
 | 
						|
 | 
						|
  /* Create the colormap and color index table. */
 | 
						|
  create_colormap(cinfo);
 | 
						|
  create_colorindex(cinfo);
 | 
						|
 | 
						|
  /* Allocate Floyd-Steinberg workspace now if requested.
 | 
						|
   * We do this now since it is FAR storage and may affect the memory
 | 
						|
   * manager's space calculations.  If the user changes to FS dither
 | 
						|
   * mode in a later pass, we will allocate the space then, and will
 | 
						|
   * possibly overrun the max_memory_to_use setting.
 | 
						|
   */
 | 
						|
  if (cinfo->dither_mode == JDITHER_FS)
 | 
						|
    alloc_fs_workspace(cinfo);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* QUANT_1PASS_SUPPORTED */
 |