campo-sirio/al/cpp_all/monitor.cpp
alex 714dd74636 Archive Library versione 2.00
git-svn-id: svn://10.65.10.50/trunk@5350 c028cbd2-c16b-5b4b-a496-9718f37d4682
1997-10-09 16:09:54 +00:00

470 lines
12 KiB
C++
Executable File

//
// MONITOR.CPP
//
// Source file for ArchiveLib 1.0
//
// Copyright (c) Greenleaf Software, Inc. 1994-1996
// All Rights Reserved
//
// CONTENTS
//
// ALMonitor::operator new()
// ALMonitor::ALMonitor()
// ALMonitor::~ALMonitor()
// deleteALMonitor();
// ALMonitor::Progress()
// ALMonitor::ArchiveOperation()
//
// DESCRIPTION
//
// This file contains all the functions defined for ALMonitor. This is
// a base class, and you generally won't use an implementation of it.
// It doesn't have any pure functions, so if you want a do-nothing
// monitor, use this guy. Other than that, the Progress() function actually
// does a useful calculation for derived classes, so they might call it.
//
// REVISION HISTORY
//
// May 26, 1994 1.0A : First release
//
// January 9, 1995 1.01A : Minor change in constructor
//
// February 14, 1996 2.0A : New Release
//
#include "arclib.h"
#if !defined( AL_IBM )
#pragma hdrstop
#endif
//
// NAME
//
// ALMonitor::operator new()
//
// PLATFORMS/ENVIRONMENTS
//
// Console Windows PM
// C++
//
// SHORT DESCRIPTION
//
// Memory allocator used when ArchiveLib resides in a 16 bit DLL.
//
// C++ SYNOPSIS
//
// #include "arclib.h"
//
// void * ALMonitor::operator new( size_t size )
//
// C SYNOPSIS
//
// None, this is an internal C++ function.
//
// VB SYNOPSIS
//
// None.
//
// DELPHI SYNOPSIS
//
// None.
//
// ARGUMENTS
//
// size : The number of bytes that the compiler has decided will be
// necessary to construct a new ALMonitor object.
//
// DESCRIPTION
//
// When using a DLL, it is easy to get into a dangerous situation when
// creating objects whose ctor and dtor are both in the DLL. The problem
// arises because when you create an object using new, the memory for
// the object will be allocated from the EXE. However, when you destroy
// the object using delete, the memory is freed inside the DLL. Since
// the DLL doesn't really own that memory, bad things can happen.
//
// But, you say, won't the space just go back to the Windows heap regardless
// of who tries to free it? Maybe, but maybe not. If the DLL is using
// a subsegment allocation scheme, it might do some sort of local free
// before returning the space to the windows heap. That is the point where
// you could conceivably cook your heap.
//
// By providing our own version of operator new inside this class, we
// ensure that all memory allocation for the class will be done from
// inside the DLL, not the EXE calling the DLL.
//
// RETURNS
//
// A pointer to some memory that should have been pulled out of the
// heap for the DLL.
//
// EXAMPLE
//
// SEE ALSO
//
// REVISION HISTORY
//
// May 24, 1994 1.0A : First release
//
// February 14, 1996 2.0A : New Release
//
#if defined( AL_BUILDING_DLL )
void AL_DLL_FAR * AL_PROTO
ALMonitor::operator new( size_t size ) /* Tag protected function */
{
return ::new char[ size ];
}
#endif
//
// NAME
//
// ALMonitor::ALMonitor()
//
// PLATFORMS/ENVIRONMENTS
//
// Console Windows PM
// C++
//
// SHORT DESCRIPTION
//
// The base monitor class constructor.
//
// C++ SYNOPSIS
//
// #include "arclib.h"
//
// ALMonitor::ALMonitor( ALMonitorType monitor_type );
//
// C SYNOPSIS
//
// None, C programs must use derived class constructors.
//
// VB SYNOPSIS
//
// None, VB programs must use derived class constructors.
//
// DELPHI SYNOPSIS
//
// None, Delphi programs must use derived class constructors.
//
// ARGUMENTS
//
// monitor_type : One of the enumerated types from ALDEFS.H. The only
// two types supported are AL_MONITOR_OBJECTS and
// AL_MONITOR_JOB.
//
// DESCRIPTION
//
// This function is called when one of the derived classes is creating
// a new monitor. (It could be called directly, but you aren't likely
// to instantiate an ALMonitor.) It has only one thing to do, which
// is to initialize the miMonitorType data member. This data member
// is a const member, so it has to be initialized in an initializer list.
// It's nice to make it const, because then you can leave it public and
// nobody gets to jack with it.
//
// RETURNS
//
// When called dynamically, for example from operator new, this function
// returns a pointer to a newly created monitor. Otherwise, it returns
// nothing.
//
// EXAMPLE
//
// SEE ALSO
//
// REVISION HISTORY
//
// February 14, 1996 2.0A : New Release
//
AL_PROTO
ALMonitor::ALMonitor( ALMonitorType monitor_type ) /* Tag public function */
: miMonitorType( monitor_type )
{
mlObjectStart = 0;
mlObjectSize = -1;
}
//
// NAME
//
// ALMonitor::~ALMonitor();
//
// PLATFORMS/ENVIRONMENTS
//
// Console Windows PM
// C++ C VB Delphi
//
// SHORT DESCRIPTION
//
// The destructor for the base monitor class.
//
// C++ SYNOPSIS
//
// #include "arclib.h"
//
// ALMonitor::~ALMonitor();
//
// C SYNOPSIS
//
// #include "arclib.h"
//
// void deleteALMonitor( hALMonitor this_object )
//
// VB SYNOPSIS
//
// Declare Sub deleteALMonitor Lib "AL20LW" (ByVal this_object&)
//
// DELPHI SYNOPSIS
//
// procedure deleteALMonitor( this_object : hALMonitor );
//
// ARGUMENTS
//
// this_object : A reference or pointer to the ALMonitor object that
// is going to be deleted. Note that the C++
// version of this call doesn't have an explicit argument
// here, since it has access to 'this' implicitly.
//
// DESCRIPTION
//
// The ALMonitor destructor doesn't have to clean up any dynamic
// storage or anything like that. As a consequence, all we do is
// check the validity of this in debug mode.
//
// Note that C/VB/Delphi programs will always call this function to
// destroy ALMonitors of any derived class. Since the dtor is a virtual
// function, the call will get routed to the correct function via the
// virtual function mechanism.
//
// RETURNS
//
// Nothing.
//
// EXAMPLE
//
// SEE ALSO
//
// REVISION HISTORY
//
// February 14, 1996 2.0A : New Release
//
AL_PROTO ALMonitor::~ALMonitor() /* Tag public function */
{
AL_ASSERT( GoodTag(), "~ALMonitor: attempt to delete invalid object" );
}
#if !defined( AL_NO_C )
extern "C" AL_LINKAGE void AL_FUNCTION
deleteALMonitor( hALMonitor this_object ) /* Tag public function */
{
AL_ASSERT_OBJECT( this_object, ALMonitor, "deleteALMonitor" );
delete (ALMonitor *) this_object;
}
#endif
//
// NAME
//
// ALMonitor::Progress()
//
// PLATFORMS/ENVIRONMENTS
//
// Console Windows PM
// C++
//
// SHORT DESCRIPTION
//
// The virtual function called during compression routines.
//
// C++ SYNOPSIS
//
// #include "arclib.h"
//
// void ALMonitor::Progress( long object_tell,
// ALStorage &object );
//
// C SYNOPSIS
//
// None, this is a virtual callback routine.
//
// VB SYNOPSIS
//
// None, this is a vritual callback routine.
//
// DELPHI SYNOPSIS
//
// None, this is a virtual callback routine.
//
// ARGUMENTS
//
// object_tell : The current offset withing the object being compressed,
// expanded, copied, or processed.
//
// object : A reference to the storage object being processed.
//
//
// DESCRIPTION
//
// This is a virtual function. ALMonitor::Progress() gets called from
// YieldTime() inside a storage object, which happens pretty
// frequently. Normally the derived class will have its own version
// of Progress(), so this guy won't get called directly.
//
// However, most of the derived versions of Progress() will go ahead and
// call this version anyway. Why? Because this guy calculates the values
// of miRatio and mlByteCount for you.
//
// The calculated values of miRatio and mlByteCount will differ depending
// on whether the monitor is of type AL_MONITOR_JOB or AL_MONITOR_OBJECTS.
//
// In AL_MONITOR_OBJECTS mode, the byte count is going be calculated by
// taking the current offset of the object and subtracting the starting
// position of the object. We have to subtract out the starting position,
// because sometimes we are going to be monitoring an object that resides
// in an archive, and its starting position will not be at location 0.
//
// If we are in AL_MONITOR_JOB mode, the byte count is going to be the
// same as referred to above, plus the value of mlJobSoFar. That data
// member contains the total number of bytes processed in previous objects
// in this job. That figure is updated after each object is processed,
// but not by this class. ALArchiveBase does this for ordinary archiving
// operations, you can look at that code for hints on how to do this
// yourself.
//
// Calculating the ratio is pretty easy. If you are in AL_MONITOR_OBJECTS
// mode, you just divide the byte count by the object size. If you are
// in AL_MONITOR_JOB mode, you divide the byte count by the job size. Once
// again, the job size will have been calculated in advance by whatever
// process is performing the compression/expansion operation.
//
// Note that there is one tricky bit here. If the object size was set to
// -1 by the calling program, it means this routine has to go out and
// get the size. This convenience cuts down on code in the high level
// routine.
//
// RETURNS
//
// None.
//
// EXAMPLE
//
// SEE ALSO
//
// REVISION HISTORY
//
// February 14, 1996 2.0A : New Release
//
void AL_PROTO
ALMonitor::Progress( long object_tell, /* Tag public function */
ALStorage AL_DLL_FAR & object )
{
mlByteCount = object_tell - mlObjectStart;
if ( mlObjectSize == -1 )
mlObjectSize = object.GetSize();
if ( miMonitorType == AL_MONITOR_JOB ) {
mlByteCount += mlJobSoFar;
if ( mlJobSize == 0 )
miRatio = -1;
else {
if ( mlJobSize < 1000000L )
miRatio = (int)( 100 * mlByteCount / mlJobSize );
else
miRatio = (int)( mlByteCount / ( mlJobSize / 100L ) );
}
} else {
if ( mlObjectSize == 0 )
miRatio = -1;
else {
if ( mlObjectSize < 1000000L )
miRatio = (int)(100 * mlByteCount / mlObjectSize );
else
miRatio = (int)( mlByteCount / ( mlObjectSize / 100L ) );
}
}
}
//
// NAME
//
// ALMonitor::ArchiveOperation()
//
// PLATFORMS/ENVIRONMENTS
//
// Console Windows PM
// C++
//
// SHORT DESCRIPTION
//
// The progress routine called during key archive operations.
//
// C++ SYNOPSIS
//
// #include "arclib.h"
//
// void ALMonitor::ArchiveOperation( ALArchiveOperation operation,
// ALArchive *archive,
// ALEntry *job );
//
// C SYNOPSIS
//
// None, this is a virtual callback support routine.
//
// VB SYNOPSIS
//
// None, this is a virtual callback support routine.
//
// DELPHI SYNOPSIS
//
// None, this is a virtual callback support routine.
//
// ARGUMENTS
//
// operation : One of the enumerated values of ALArchiveOperation,
// used to indicate just what is happening here.
//
// archive : A pointer to the archive object. You can use this
// in monitor routines to get the name of the archive
// or other exciting facts.
//
// job : A pointer to the ALEntry object. This lets me know
// which object is being compressed, expanded, or whatever.
//
// DESCRIPTION
//
// Derived classes override this function to print informative information
// about various archiving operations. The base class does absolutely
// nothing with this information, it is a do-nothing function.
//
// RETURNS
//
// Nothing.
//
// EXAMPLE
//
// SEE ALSO
//
// REVISION HISTORY
//
// February 14, 1996 2.0A : New Release
//
void AL_PROTO
ALMonitor::ArchiveOperation( ALArchiveOperation, /* Tag public function */
ALArchive AL_DLL_FAR *,
ALEntry AL_DLL_FAR * )
{
}