campo-sirio/gfm/compaux.c
alex 0688668ef5 Patch level : 2.0 464
Files correlati     : gfm.dll
Ricompilazione Demo : [ ]
Commento            :
Modifiche per la compilazione Linux


git-svn-id: svn://10.65.10.50/trunk@11079 c028cbd2-c16b-5b4b-a496-9718f37d4682
2003-05-01 14:42:54 +00:00

386 lines
10 KiB
C
Executable File

/* DEC *_CompoundAux(fun, nperi, nperd, intr, pv, pmt, fv, begend, opt)
*
* ARGUMENT
* int fun, *nperi, begend, opt;
* DEC *nperd, *intr, *pv, *pmt, *fv;
*
* DESCRIPTION
* Given four variables involved in compound interest, solves for the
* fifth one. The variables are the number of periods nper, the percentage
* interest rate per period intr, the present value pv, the periodic payment
* pmt, and the future value fv. begend specifies whether payments take
* place at the beginning or the end of each month, while opt tells which
* variable to solve for.
* This auxillary function does the work of CompoundInterest,
* CompoundInterestSimple, CompoundInterestCompound,
* and AdvancePayment.
*
* SIDE EFFECTS
* Changes value of unknown variable.
*
* RETURNS
* In case of success when not solving for nper, the result is returned.
* If solving for nper or if an error occurs, GM_NULL is returned.
*
* POSSIBLE ERRORS
* GM_NULLPOINTER
* GM_ARGVAL
*
*
*
* AUTHOR
* Jared Levy
* Copyright (C) 1988-1990 Greenleaf Software Inc. All rights reserved.
*
* ALGORITHM
* Solve the following formula for the unknown variable:
* 0=pv*alpha + (1+intr*begend)*pmt*[1-(1+intr)^-int(nper)]/intr +
* fv*(1+intr)^-int(nper)
* where alpha=1 for no odd period,
* alpha=1+intr*frac(nper) for an odd period with simple interest
* alpha=(1+intr)^frac(nper) for an odd period with compound interest
*
* If intr==0, the function solves
* 0 = pv + nper * pmt + fv
* If nper==0, the function solves
* 0 = pv * alpha + fv
*
* The equation can be solved in closed form for any variable except intr,
* which requires numerical methods.
* The variables used by this routine have the following meanings:
* fun: 1 if called by ComoundInterest, 2 if by CompoundInterestSimple,
* 3 if by CompoundInterestCompound, and 0 if by AdvancePayment
* nperi: integer number of periods if fun==1
* nperd: DEC number of periods if fun==2 or fun==3
* intr: interest rate per period
* pv: present value
* pmt: period payment
* fv: future value (balloon payment)
* begend: GM_BEGIN if payments at beginning of period, GM_END if at end
* (or if fun==0, number of advanced payments ad)
* opt: variable to solve for: GM_N, GM_PV, GM_INTR, GM_FV, GM_PMT
*
* opi: 1 + intr
* intper: integer part of nper
* fractper: fractional part of nper (if fun==2 or fun==3)
* opitmn: (1 + intr) ^ -intper
* mess: (1 + begend)[1 - (1 + intr) ^ -intper]/intr
* alpha: 1 + intr * fractper if fun==2, (1 + intr) ^ fractper if fun==3
* pva: pv * alpha
* fvopi: fv * opitmn
* pmtm: pmt * mess
* temp, temp2: temporary DEC's
*/
#include <stdio.h>
#include "gm.h"
#include "gmsystem.h"
DEC *_CompoundAux(fun, nperi, nperd, intr, pv, pmt, fv, begend, opt)
int fun, *nperi, begend, opt;
DEC *nperd, *intr, *pv, *pmt, *fv;
{
int intper, ad;
DEC dopi, *opi=&dopi, dfractper, *fractper=&dfractper;
DEC dmess, *mess=&dmess, dalpha, *alpha=&dalpha;
DEC dpva, *pva=&dpva, dfvopi, *fvopi=&dfvopi;
DEC dpmtm, *pmtm=&dpmtm, dopitmn, *opitmn=&dopitmn;
DEC dtemp, *temp=&dtemp, dtemp2, *temp2=&dtemp2;
DEC dnintr, *nintr=&dnintr;
DEC ddad, *dad=&ddad, dopitmna, *opitmna=&dopitmna;
if (!intr||!pv||!pmt||!fv||!nperd) {
_MacErr(GM_NULLPOINTER);
return(GM_NULL);
}
if ((opt!=GM_I && _MacBad(intr)) || (opt!=GM_PV && _MacBad(pv)) ||
(opt!=GM_PMT && _MacBad(pmt)) || (opt!=GM_FV && _MacBad(fv))) {
_MacErr(GM_INIT);
return(GM_NULL);
}
if ((begend!=GM_BEGIN&&begend!=GM_END&&fun!=0)||
(opt!=GM_N&&opt!=GM_I&&opt!=GM_PV&&opt!=GM_PMT&&opt!=GM_FV)||
(opt!=GM_I&&CompareDecimal(intr,&decMinusHundred)!=1)) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
intper = 0;
ad = begend;
if (opt!=GM_N) {
/* determine integer & fractional parts of nper, if in range */
if (fun<=1) {
if (*nperi<0) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
intper=*nperi;
}
else {
if (_MacIsDecN(nperd)||
(CompareDecimal(nperd,&decMaxTime)==1)) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
(void) _TruncateDec80Bit(temp, nperd, 0);
intper=temp->dc.sl[0];
(void) _SubDec80Bit(fractper, nperd, temp);
}
}
if (opt==GM_I) {
opi=_InterestAux(fun, intper, fractper,
intr, pv, pmt, fv, begend);
return(opi);
}
_MacDCopy(nintr, intr);
nintr->dc.id+=2;
/* opi = 1+i */
(void) _AddDec80Bit(opi, nintr, &decOne);
if (opt!=GM_N) {
/* handle zero interest */
if (_MacIsDecZ(intr)) {
(void) ConvLongToDecimal(temp2, (long) intper);
if (opt==GM_PV) {
(void) _MulDec80Bit(temp, temp2, pmt);
(void) _AddDec80Bit(temp, temp, fv);
_MacDChgs(temp);
(void) _ScaleDec80Bit(pv, temp, 2);
return(pv);
}
if (opt==GM_FV) {
(void) _MulDec80Bit(temp, temp2, pmt);
(void) _AddDec80Bit(temp, temp, pv);
_MacDChgs(temp);
(void) _ScaleDec80Bit(fv, temp, 2);
return(fv);
}
if (opt==GM_PMT) {
if (intper==0) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
(void) _AddDec80Bit(temp, pv, fv);
_MacDChgs(temp);
(void) _DivRndDec80Bit(pmt, temp, temp2, 2);
return(pmt);
}
}
/* calculate alpha */
if (fun==2) {
(void) _MulDec80Bit(temp, nintr, fractper);
(void) _AddDec80Bit(alpha, temp, &decOne);
}
if (fun==3) {
(void) _LnDec80Bit(temp, opi);
(void) _MulDec80Bit(temp, temp, fractper);
(void) _ExpDec80Bit(alpha, temp);
}
/* handle zero nper */
if (intper==0) {
if (opt==GM_PMT) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
if (opt==GM_PV) {
if (fun<=1)
(void) _ScaleDec80Bit(pv, fv, 2);
else
(void) _DivRndDec80Bit(
pv, fv, alpha, 2);
_MacDChgs(pv);
return(pv);
}
if (opt==GM_FV) {
if (fun<=1)
(void) _ScaleDec80Bit(fv, pv, 2);
else {
(void) _MulDec80Bit(fv, pv, alpha);
(void) _ScaleDec80Bit(fv, fv, 2);
}
_MacDChgs(fv);
return(fv);
}
}
/* calcuate (1+i)^-n and (1+iS)[1-(1+i)^-n]/i */
(void) _IntPwrDec80Bit(opitmn, opi, -intper);
(void) _SubDec80Bit(temp, &decOne, opitmn);
/* Advance payment needs (1+i)^-(n-a) */
if (fun==0) {
(void) _IntPwrDec80Bit(opitmna, opi, -(intper-ad));
(void) _SubDec80Bit(temp, &decOne, opitmna);
(void) ConvLongToDecimal(dad, (long) ad);
}
else
(void) _SubDec80Bit(temp, &decOne, opitmn);
(void) _DivDec80Bit(mess, temp, nintr);
if (begend==GM_BEGIN && fun!=0)
(void) _MulDec80Bit(mess, mess, opi);
if ((opt==GM_PMT||opt==GM_FV)) {
if (fun>1)
(void) _MulDec80Bit(pva, pv, alpha);
if (fun<=1)
_MacDCopy(pva, pv);
}
/* calculate FV*(1+i)^-n */
if (opt==GM_PV||opt==GM_PMT)
(void) _MulDec80Bit(fvopi, fv, opitmn);
if (opt==GM_PV||opt==GM_FV)
(void) _MulDec80Bit(pmtm, pmt, mess);
if (opt==GM_PV) {
(void) _AddDec80Bit(temp, pmtm, fvopi);
_MacDChgs(temp);
if (fun>1)
(void) _DivRndDec80Bit(pv, temp, alpha, 2);
if (fun==1)
(void) _ScaleDec80Bit(pv, temp, 2);
if (fun==0) {
(void) _MulDec80Bit(temp2, dad, pmt);
(void) _SubDec80Bit(temp, temp, temp2);
(void) _ScaleDec80Bit(pv, temp, 2);
}
return(pv);
}
if (opt==GM_PMT) {
(void) _AddDec80Bit(temp, pva, fvopi);
_MacDChgs(temp);
if (fun==0)
(void) _AddDec80Bit(mess, mess, dad);
(void) _DivRndDec80Bit(pmt, temp, mess, 2);
return(pmt);
}
if (opt==GM_FV) {
if (fun==0) {
(void) _MulDec80Bit(temp, pmt, dad);
(void) _AddDec80Bit(pva, pv, temp);
}
(void) _AddDec80Bit(temp, pva, pmtm);
_MacDChgs(temp);
(void) _DivRndDec80Bit(fv, temp, opitmn, 2);
return(fv);
}
}
/* opt==GM_N */
/* handle zero interest */
if (_MacIsDecZ(intr)) {
if (_MacIsDecZ(pmt)) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
(void) _AddDec80Bit(temp, pv, fv);
_MacDChgs(temp);
(void) _DivTrnDec80Bit(temp2, temp, pmt, 0);
/* check for exact division => don't increment */
(void) _MulDec80Bit(mess, temp2, pmt);
if (CompareDecimal(temp,mess)!=0)
(void) _AddDec80Bit(temp2, temp2, &decOne);
if (_MacIsDecN(temp2)||CompareDecimal(temp2,&decMaxTime)==1) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
if (fun==1) {
*nperi=temp2->dc.sl[0];
return(GM_NULL);
}
else {
_MacDCopy(nperd, temp2);
return(nperd);
}
}
/* first solve for integer part of period */
(void) _DivDec80Bit(temp, pmt, nintr);
if (begend==GM_BEGIN)
(void) _MulDec80Bit(temp, temp, opi);
_MacDCopy(temp2, temp);
(void) _AddDec80Bit(temp, temp, pv);
(void) _SubDec80Bit(temp2, temp2, fv);
if (_MacIsDecZ(temp)||_MacIsDecZ(temp2)) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
(void) _DivDec80Bit(temp, temp2, temp);
if (!_MacIsDecP(temp)) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
(void) _LnDec80Bit(temp, temp);
(void) _LnDec80Bit(temp2, opi);
(void) _DivTrnDec80Bit(temp, temp, temp2, 0);
if (_MacIsDecN(temp)||(CompareDecimal(temp,&decMaxTime)==1)) {
_MacErr(GM_ARGVAL);
return(GM_NULL);
}
intper=temp->dc.sl[0]+1;
if (intper==1)
intper--;
/* the +1 rounding assumes the ratio of logarithms is not an integer */
if (fun==1) {
*nperi=intper; /* always round up */
return(GM_NULL);
}
/* fun > 1 */
(void) ConvLongToDecimal(nperd, (long) intper);
/* zero pv makes fractional period irrelevant */
if (_MacIsDecZ(pv))
return(nperd);
/* now solve for fractional part & add to integer part */
(void) _IntPwrDec80Bit(opitmn, opi, -intper);
(void) _SubDec80Bit(temp, &decOne, opitmn);
(void) _DivDec80Bit(mess, temp, nintr);
if (begend==GM_BEGIN)
(void) _MulDec80Bit(mess, mess, opi);
(void) _MulDec80Bit(pmtm, pmt, mess);
(void) _MulDec80Bit(fvopi, fv, opitmn);
(void) _AddDec80Bit(temp, pmtm, fvopi);
_MacDChgs(temp);
(void) _DivDec80Bit(alpha, temp, pv);
if (fun==2) {
(void) _SubDec80Bit(temp, alpha, &decOne);
(void) _DivDec80Bit(fractper, temp, nintr);
(void) _AddDec80Bit(nperd, nperd, fractper);
(void) _Sq5UnsTo4Uns(nperd);
}
if (fun==3) {
if (!_MacIsDecP(alpha))
return(nperd);
(void) _LnDec80Bit(temp, alpha);
(void) _LnDec80Bit(temp2, opi);
(void) _DivDec80Bit(fractper, temp, temp2);
(void) _AddDec80Bit(nperd, nperd, fractper);
(void) _Sq5UnsTo4Uns(nperd);
}
return(nperd);
}