Files correlati : Ricompilazione Demo : [ ] Commento :Primo commit del modulo git-svn-id: svn://10.65.10.50/trunk@13958 c028cbd2-c16b-5b4b-a496-9718f37d4682
		
			
				
	
	
		
			388 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			388 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /*
 | |
|  * jcdctmgr.c
 | |
|  *
 | |
|  * Copyright (C) 1994-1996, Thomas G. Lane.
 | |
|  * This file is part of the Independent JPEG Group's software.
 | |
|  * For conditions of distribution and use, see the accompanying README file.
 | |
|  *
 | |
|  * This file contains the forward-DCT management logic.
 | |
|  * This code selects a particular DCT implementation to be used,
 | |
|  * and it performs related housekeeping chores including coefficient
 | |
|  * quantization.
 | |
|  */
 | |
| 
 | |
| #define JPEG_INTERNALS
 | |
| #include "jinclude.h"
 | |
| #include "jpeglib.h"
 | |
| #include "jdct.h"		/* Private declarations for DCT subsystem */
 | |
| 
 | |
| 
 | |
| /* Private subobject for this module */
 | |
| 
 | |
| typedef struct {
 | |
|   struct jpeg_forward_dct pub;	/* public fields */
 | |
| 
 | |
|   /* Pointer to the DCT routine actually in use */
 | |
|   forward_DCT_method_ptr do_dct;
 | |
| 
 | |
|   /* The actual post-DCT divisors --- not identical to the quant table
 | |
|    * entries, because of scaling (especially for an unnormalized DCT).
 | |
|    * Each table is given in normal array order.
 | |
|    */
 | |
|   DCTELEM * divisors[NUM_QUANT_TBLS];
 | |
| 
 | |
| #ifdef DCT_FLOAT_SUPPORTED
 | |
|   /* Same as above for the floating-point case. */
 | |
|   float_DCT_method_ptr do_float_dct;
 | |
|   FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
 | |
| #endif
 | |
| } my_fdct_controller;
 | |
| 
 | |
| typedef my_fdct_controller * my_fdct_ptr;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initialize for a processing pass.
 | |
|  * Verify that all referenced Q-tables are present, and set up
 | |
|  * the divisor table for each one.
 | |
|  * In the current implementation, DCT of all components is done during
 | |
|  * the first pass, even if only some components will be output in the
 | |
|  * first scan.  Hence all components should be examined here.
 | |
|  */
 | |
| 
 | |
| METHODDEF(void)
 | |
| start_pass_fdctmgr (j_compress_ptr cinfo)
 | |
| {
 | |
|   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
 | |
|   int ci, qtblno, i;
 | |
|   jpeg_component_info *compptr;
 | |
|   JQUANT_TBL * qtbl;
 | |
|   DCTELEM * dtbl;
 | |
| 
 | |
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
 | |
|        ci++, compptr++) {
 | |
|     qtblno = compptr->quant_tbl_no;
 | |
|     /* Make sure specified quantization table is present */
 | |
|     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
 | |
| 	cinfo->quant_tbl_ptrs[qtblno] == NULL)
 | |
|       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
 | |
|     qtbl = cinfo->quant_tbl_ptrs[qtblno];
 | |
|     /* Compute divisors for this quant table */
 | |
|     /* We may do this more than once for same table, but it's not a big deal */
 | |
|     switch (cinfo->dct_method) {
 | |
| #ifdef DCT_ISLOW_SUPPORTED
 | |
|     case JDCT_ISLOW:
 | |
|       /* For LL&M IDCT method, divisors are equal to raw quantization
 | |
|        * coefficients multiplied by 8 (to counteract scaling).
 | |
|        */
 | |
|       if (fdct->divisors[qtblno] == NULL) {
 | |
| 	fdct->divisors[qtblno] = (DCTELEM *)
 | |
| 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
| 				      DCTSIZE2 * SIZEOF(DCTELEM));
 | |
|       }
 | |
|       dtbl = fdct->divisors[qtblno];
 | |
|       for (i = 0; i < DCTSIZE2; i++) {
 | |
| 	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
 | |
|       }
 | |
|       break;
 | |
| #endif
 | |
| #ifdef DCT_IFAST_SUPPORTED
 | |
|     case JDCT_IFAST:
 | |
|       {
 | |
| 	/* For AA&N IDCT method, divisors are equal to quantization
 | |
| 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
 | |
| 	 *   scalefactor[0] = 1
 | |
| 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
 | |
| 	 * We apply a further scale factor of 8.
 | |
| 	 */
 | |
| #define CONST_BITS 14
 | |
| 	static const INT16 aanscales[DCTSIZE2] = {
 | |
| 	  /* precomputed values scaled up by 14 bits */
 | |
| 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
 | |
| 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
 | |
| 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
 | |
| 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
 | |
| 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
 | |
| 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
 | |
| 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
 | |
| 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
 | |
| 	};
 | |
| 	SHIFT_TEMPS
 | |
| 
 | |
| 	if (fdct->divisors[qtblno] == NULL) {
 | |
| 	  fdct->divisors[qtblno] = (DCTELEM *)
 | |
| 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
| 					DCTSIZE2 * SIZEOF(DCTELEM));
 | |
| 	}
 | |
| 	dtbl = fdct->divisors[qtblno];
 | |
| 	for (i = 0; i < DCTSIZE2; i++) {
 | |
| 	  dtbl[i] = (DCTELEM)
 | |
| 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
 | |
| 				  (INT32) aanscales[i]),
 | |
| 		    CONST_BITS-3);
 | |
| 	}
 | |
|       }
 | |
|       break;
 | |
| #endif
 | |
| #ifdef DCT_FLOAT_SUPPORTED
 | |
|     case JDCT_FLOAT:
 | |
|       {
 | |
| 	/* For float AA&N IDCT method, divisors are equal to quantization
 | |
| 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
 | |
| 	 *   scalefactor[0] = 1
 | |
| 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
 | |
| 	 * We apply a further scale factor of 8.
 | |
| 	 * What's actually stored is 1/divisor so that the inner loop can
 | |
| 	 * use a multiplication rather than a division.
 | |
| 	 */
 | |
| 	FAST_FLOAT * fdtbl;
 | |
| 	int row, col;
 | |
| 	static const double aanscalefactor[DCTSIZE] = {
 | |
| 	  1.0, 1.387039845, 1.306562965, 1.175875602,
 | |
| 	  1.0, 0.785694958, 0.541196100, 0.275899379
 | |
| 	};
 | |
| 
 | |
| 	if (fdct->float_divisors[qtblno] == NULL) {
 | |
| 	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
 | |
| 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
| 					DCTSIZE2 * SIZEOF(FAST_FLOAT));
 | |
| 	}
 | |
| 	fdtbl = fdct->float_divisors[qtblno];
 | |
| 	i = 0;
 | |
| 	for (row = 0; row < DCTSIZE; row++) {
 | |
| 	  for (col = 0; col < DCTSIZE; col++) {
 | |
| 	    fdtbl[i] = (FAST_FLOAT)
 | |
| 	      (1.0 / (((double) qtbl->quantval[i] *
 | |
| 		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
 | |
| 	    i++;
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|       break;
 | |
| #endif
 | |
|     default:
 | |
|       ERREXIT(cinfo, JERR_NOT_COMPILED);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Perform forward DCT on one or more blocks of a component.
 | |
|  *
 | |
|  * The input samples are taken from the sample_data[] array starting at
 | |
|  * position start_row/start_col, and moving to the right for any additional
 | |
|  * blocks. The quantized coefficients are returned in coef_blocks[].
 | |
|  */
 | |
| 
 | |
| METHODDEF(void)
 | |
| forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
 | |
| 	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
 | |
| 	     JDIMENSION start_row, JDIMENSION start_col,
 | |
| 	     JDIMENSION num_blocks)
 | |
| /* This version is used for integer DCT implementations. */
 | |
| {
 | |
|   /* This routine is heavily used, so it's worth coding it tightly. */
 | |
|   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
 | |
|   forward_DCT_method_ptr do_dct = fdct->do_dct;
 | |
|   DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
 | |
|   DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
 | |
|   JDIMENSION bi;
 | |
| 
 | |
|   sample_data += start_row;	/* fold in the vertical offset once */
 | |
| 
 | |
|   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
 | |
|     /* Load data into workspace, applying unsigned->signed conversion */
 | |
|     { register DCTELEM *workspaceptr;
 | |
|       register JSAMPROW elemptr;
 | |
|       register int elemr;
 | |
| 
 | |
|       workspaceptr = workspace;
 | |
|       for (elemr = 0; elemr < DCTSIZE; elemr++) {
 | |
| 	elemptr = sample_data[elemr] + start_col;
 | |
| #if DCTSIZE == 8		/* unroll the inner loop */
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| #else
 | |
| 	{ register int elemc;
 | |
| 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
 | |
| 	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
 | |
| 	  }
 | |
| 	}
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Perform the DCT */
 | |
|     (*do_dct) (workspace);
 | |
| 
 | |
|     /* Quantize/descale the coefficients, and store into coef_blocks[] */
 | |
|     { register DCTELEM temp, qval;
 | |
|       register int i;
 | |
|       register JCOEFPTR output_ptr = coef_blocks[bi];
 | |
| 
 | |
|       for (i = 0; i < DCTSIZE2; i++) {
 | |
| 	qval = divisors[i];
 | |
| 	temp = workspace[i];
 | |
| 	/* Divide the coefficient value by qval, ensuring proper rounding.
 | |
| 	 * Since C does not specify the direction of rounding for negative
 | |
| 	 * quotients, we have to force the dividend positive for portability.
 | |
| 	 *
 | |
| 	 * In most files, at least half of the output values will be zero
 | |
| 	 * (at default quantization settings, more like three-quarters...)
 | |
| 	 * so we should ensure that this case is fast.  On many machines,
 | |
| 	 * a comparison is enough cheaper than a divide to make a special test
 | |
| 	 * a win.  Since both inputs will be nonnegative, we need only test
 | |
| 	 * for a < b to discover whether a/b is 0.
 | |
| 	 * If your machine's division is fast enough, define FAST_DIVIDE.
 | |
| 	 */
 | |
| #ifdef FAST_DIVIDE
 | |
| #define DIVIDE_BY(a,b)	a /= b
 | |
| #else
 | |
| #define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
 | |
| #endif
 | |
| 	if (temp < 0) {
 | |
| 	  temp = -temp;
 | |
| 	  temp += qval>>1;	/* for rounding */
 | |
| 	  DIVIDE_BY(temp, qval);
 | |
| 	  temp = -temp;
 | |
| 	} else {
 | |
| 	  temp += qval>>1;	/* for rounding */
 | |
| 	  DIVIDE_BY(temp, qval);
 | |
| 	}
 | |
| 	output_ptr[i] = (JCOEF) temp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef DCT_FLOAT_SUPPORTED
 | |
| 
 | |
| METHODDEF(void)
 | |
| forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
 | |
| 		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
 | |
| 		   JDIMENSION start_row, JDIMENSION start_col,
 | |
| 		   JDIMENSION num_blocks)
 | |
| /* This version is used for floating-point DCT implementations. */
 | |
| {
 | |
|   /* This routine is heavily used, so it's worth coding it tightly. */
 | |
|   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
 | |
|   float_DCT_method_ptr do_dct = fdct->do_float_dct;
 | |
|   FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
 | |
|   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
 | |
|   JDIMENSION bi;
 | |
| 
 | |
|   sample_data += start_row;	/* fold in the vertical offset once */
 | |
| 
 | |
|   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
 | |
|     /* Load data into workspace, applying unsigned->signed conversion */
 | |
|     { register FAST_FLOAT *workspaceptr;
 | |
|       register JSAMPROW elemptr;
 | |
|       register int elemr;
 | |
| 
 | |
|       workspaceptr = workspace;
 | |
|       for (elemr = 0; elemr < DCTSIZE; elemr++) {
 | |
| 	elemptr = sample_data[elemr] + start_col;
 | |
| #if DCTSIZE == 8		/* unroll the inner loop */
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| #else
 | |
| 	{ register int elemc;
 | |
| 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
 | |
| 	    *workspaceptr++ = (FAST_FLOAT)
 | |
| 	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
 | |
| 	  }
 | |
| 	}
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Perform the DCT */
 | |
|     (*do_dct) (workspace);
 | |
| 
 | |
|     /* Quantize/descale the coefficients, and store into coef_blocks[] */
 | |
|     { register FAST_FLOAT temp;
 | |
|       register int i;
 | |
|       register JCOEFPTR output_ptr = coef_blocks[bi];
 | |
| 
 | |
|       for (i = 0; i < DCTSIZE2; i++) {
 | |
| 	/* Apply the quantization and scaling factor */
 | |
| 	temp = workspace[i] * divisors[i];
 | |
| 	/* Round to nearest integer.
 | |
| 	 * Since C does not specify the direction of rounding for negative
 | |
| 	 * quotients, we have to force the dividend positive for portability.
 | |
| 	 * The maximum coefficient size is +-16K (for 12-bit data), so this
 | |
| 	 * code should work for either 16-bit or 32-bit ints.
 | |
| 	 */
 | |
| 	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif /* DCT_FLOAT_SUPPORTED */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initialize FDCT manager.
 | |
|  */
 | |
| 
 | |
| GLOBAL(void)
 | |
| jinit_forward_dct (j_compress_ptr cinfo)
 | |
| {
 | |
|   my_fdct_ptr fdct;
 | |
|   int i;
 | |
| 
 | |
|   fdct = (my_fdct_ptr)
 | |
|     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
| 				SIZEOF(my_fdct_controller));
 | |
|   cinfo->fdct = (struct jpeg_forward_dct *) fdct;
 | |
|   fdct->pub.start_pass = start_pass_fdctmgr;
 | |
| 
 | |
|   switch (cinfo->dct_method) {
 | |
| #ifdef DCT_ISLOW_SUPPORTED
 | |
|   case JDCT_ISLOW:
 | |
|     fdct->pub.forward_DCT = forward_DCT;
 | |
|     fdct->do_dct = jpeg_fdct_islow;
 | |
|     break;
 | |
| #endif
 | |
| #ifdef DCT_IFAST_SUPPORTED
 | |
|   case JDCT_IFAST:
 | |
|     fdct->pub.forward_DCT = forward_DCT;
 | |
|     fdct->do_dct = jpeg_fdct_ifast;
 | |
|     break;
 | |
| #endif
 | |
| #ifdef DCT_FLOAT_SUPPORTED
 | |
|   case JDCT_FLOAT:
 | |
|     fdct->pub.forward_DCT = forward_DCT_float;
 | |
|     fdct->do_float_dct = jpeg_fdct_float;
 | |
|     break;
 | |
| #endif
 | |
|   default:
 | |
|     ERREXIT(cinfo, JERR_NOT_COMPILED);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /* Mark divisor tables unallocated */
 | |
|   for (i = 0; i < NUM_QUANT_TBLS; i++) {
 | |
|     fdct->divisors[i] = NULL;
 | |
| #ifdef DCT_FLOAT_SUPPORTED
 | |
|     fdct->float_divisors[i] = NULL;
 | |
| #endif
 | |
|   }
 | |
| }
 |