1205 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1205 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
** 2001 September 15
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** This module contains C code that generates VDBE code used to process
 | 
						|
** the WHERE clause of SQL statements.
 | 
						|
**
 | 
						|
** $Id: where.c,v 1.1.1.1 2004-03-11 22:22:24 alex Exp $
 | 
						|
*/
 | 
						|
#include "sqliteInt.h"
 | 
						|
 | 
						|
/*
 | 
						|
** The query generator uses an array of instances of this structure to
 | 
						|
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
 | 
						|
** clause subexpression is separated from the others by an AND operator.
 | 
						|
*/
 | 
						|
typedef struct ExprInfo ExprInfo;
 | 
						|
struct ExprInfo {
 | 
						|
  Expr *p;                /* Pointer to the subexpression */
 | 
						|
  u8 indexable;           /* True if this subexprssion is usable by an index */
 | 
						|
  short int idxLeft;      /* p->pLeft is a column in this table number. -1 if
 | 
						|
                          ** p->pLeft is not the column of any table */
 | 
						|
  short int idxRight;     /* p->pRight is a column in this table number. -1 if
 | 
						|
                          ** p->pRight is not the column of any table */
 | 
						|
  unsigned prereqLeft;    /* Bitmask of tables referenced by p->pLeft */
 | 
						|
  unsigned prereqRight;   /* Bitmask of tables referenced by p->pRight */
 | 
						|
  unsigned prereqAll;     /* Bitmask of tables referenced by p */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** An instance of the following structure keeps track of a mapping
 | 
						|
** between VDBE cursor numbers and bitmasks.  The VDBE cursor numbers
 | 
						|
** are small integers contained in SrcList_item.iCursor and Expr.iTable
 | 
						|
** fields.  For any given WHERE clause, we want to track which cursors
 | 
						|
** are being used, so we assign a single bit in a 32-bit word to track
 | 
						|
** that cursor.  Then a 32-bit integer is able to show the set of all
 | 
						|
** cursors being used.
 | 
						|
*/
 | 
						|
typedef struct ExprMaskSet ExprMaskSet;
 | 
						|
struct ExprMaskSet {
 | 
						|
  int n;          /* Number of assigned cursor values */
 | 
						|
  int ix[32];     /* Cursor assigned to each bit */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** Determine the number of elements in an array.
 | 
						|
*/
 | 
						|
#define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))
 | 
						|
 | 
						|
/*
 | 
						|
** This routine is used to divide the WHERE expression into subexpressions
 | 
						|
** separated by the AND operator.
 | 
						|
**
 | 
						|
** aSlot[] is an array of subexpressions structures.
 | 
						|
** There are nSlot spaces left in this array.  This routine attempts to
 | 
						|
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
 | 
						|
** The return value is the number of slots filled.
 | 
						|
*/
 | 
						|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
 | 
						|
  int cnt = 0;
 | 
						|
  if( pExpr==0 || nSlot<1 ) return 0;
 | 
						|
  if( nSlot==1 || pExpr->op!=TK_AND ){
 | 
						|
    aSlot[0].p = pExpr;
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  if( pExpr->pLeft->op!=TK_AND ){
 | 
						|
    aSlot[0].p = pExpr->pLeft;
 | 
						|
    cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
 | 
						|
  }else{
 | 
						|
    cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
 | 
						|
    cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
 | 
						|
  }
 | 
						|
  return cnt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Initialize an expression mask set
 | 
						|
*/
 | 
						|
#define initMaskSet(P)  memset(P, 0, sizeof(*P))
 | 
						|
 | 
						|
/*
 | 
						|
** Return the bitmask for the given cursor.  Assign a new bitmask
 | 
						|
** if this is the first time the cursor has been seen.
 | 
						|
*/
 | 
						|
static int getMask(ExprMaskSet *pMaskSet, int iCursor){
 | 
						|
  int i;
 | 
						|
  for(i=0; i<pMaskSet->n; i++){
 | 
						|
    if( pMaskSet->ix[i]==iCursor ) return 1<<i;
 | 
						|
  }
 | 
						|
  if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
 | 
						|
    pMaskSet->n++;
 | 
						|
    pMaskSet->ix[i] = iCursor;
 | 
						|
    return 1<<i;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Destroy an expression mask set
 | 
						|
*/
 | 
						|
#define freeMaskSet(P)   /* NO-OP */
 | 
						|
 | 
						|
/*
 | 
						|
** This routine walks (recursively) an expression tree and generates
 | 
						|
** a bitmask indicating which tables are used in that expression
 | 
						|
** tree.
 | 
						|
**
 | 
						|
** In order for this routine to work, the calling function must have
 | 
						|
** previously invoked sqliteExprResolveIds() on the expression.  See
 | 
						|
** the header comment on that routine for additional information.
 | 
						|
** The sqliteExprResolveIds() routines looks for column names and
 | 
						|
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
 | 
						|
** the VDBE cursor number of the table.
 | 
						|
*/
 | 
						|
static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
 | 
						|
  unsigned int mask = 0;
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  if( p->op==TK_COLUMN ){
 | 
						|
    return getMask(pMaskSet, p->iTable);
 | 
						|
  }
 | 
						|
  if( p->pRight ){
 | 
						|
    mask = exprTableUsage(pMaskSet, p->pRight);
 | 
						|
  }
 | 
						|
  if( p->pLeft ){
 | 
						|
    mask |= exprTableUsage(pMaskSet, p->pLeft);
 | 
						|
  }
 | 
						|
  if( p->pList ){
 | 
						|
    int i;
 | 
						|
    for(i=0; i<p->pList->nExpr; i++){
 | 
						|
      mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return mask;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return TRUE if the given operator is one of the operators that is
 | 
						|
** allowed for an indexable WHERE clause.  The allowed operators are
 | 
						|
** "=", "<", ">", "<=", ">=", and "IN".
 | 
						|
*/
 | 
						|
static int allowedOp(int op){
 | 
						|
  switch( op ){
 | 
						|
    case TK_LT:
 | 
						|
    case TK_LE:
 | 
						|
    case TK_GT:
 | 
						|
    case TK_GE:
 | 
						|
    case TK_EQ:
 | 
						|
    case TK_IN:
 | 
						|
      return 1;
 | 
						|
    default:
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** The input to this routine is an ExprInfo structure with only the
 | 
						|
** "p" field filled in.  The job of this routine is to analyze the
 | 
						|
** subexpression and populate all the other fields of the ExprInfo
 | 
						|
** structure.
 | 
						|
*/
 | 
						|
static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
 | 
						|
  Expr *pExpr = pInfo->p;
 | 
						|
  pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
 | 
						|
  pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
 | 
						|
  pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
 | 
						|
  pInfo->indexable = 0;
 | 
						|
  pInfo->idxLeft = -1;
 | 
						|
  pInfo->idxRight = -1;
 | 
						|
  if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
 | 
						|
    if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
 | 
						|
      pInfo->idxRight = pExpr->pRight->iTable;
 | 
						|
      pInfo->indexable = 1;
 | 
						|
    }
 | 
						|
    if( pExpr->pLeft->op==TK_COLUMN ){
 | 
						|
      pInfo->idxLeft = pExpr->pLeft->iTable;
 | 
						|
      pInfo->indexable = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
 | 
						|
** left-most table in the FROM clause of that same SELECT statement and
 | 
						|
** the table has a cursor number of "base".
 | 
						|
**
 | 
						|
** This routine attempts to find an index for pTab that generates the
 | 
						|
** correct record sequence for the given ORDER BY clause.  The return value
 | 
						|
** is a pointer to an index that does the job.  NULL is returned if the
 | 
						|
** table has no index that will generate the correct sort order.
 | 
						|
**
 | 
						|
** If there are two or more indices that generate the correct sort order
 | 
						|
** and pPreferredIdx is one of those indices, then return pPreferredIdx.
 | 
						|
**
 | 
						|
** nEqCol is the number of columns of pPreferredIdx that are used as
 | 
						|
** equality constraints.  Any index returned must have exactly this same
 | 
						|
** set of columns.  The ORDER BY clause only matches index columns beyond the
 | 
						|
** the first nEqCol columns.
 | 
						|
**
 | 
						|
** All terms of the ORDER BY clause must be either ASC or DESC.  The
 | 
						|
** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
 | 
						|
** set to 0 if the ORDER BY clause is all ASC.
 | 
						|
*/
 | 
						|
static Index *findSortingIndex(
 | 
						|
  Table *pTab,            /* The table to be sorted */
 | 
						|
  int base,               /* Cursor number for pTab */
 | 
						|
  ExprList *pOrderBy,     /* The ORDER BY clause */
 | 
						|
  Index *pPreferredIdx,   /* Use this index, if possible and not NULL */
 | 
						|
  int nEqCol,             /* Number of index columns used with == constraints */
 | 
						|
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | 
						|
){
 | 
						|
  int i, j;
 | 
						|
  Index *pMatch;
 | 
						|
  Index *pIdx;
 | 
						|
  int sortOrder;
 | 
						|
 | 
						|
  assert( pOrderBy!=0 );
 | 
						|
  assert( pOrderBy->nExpr>0 );
 | 
						|
  sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
 | 
						|
  for(i=0; i<pOrderBy->nExpr; i++){
 | 
						|
    Expr *p;
 | 
						|
    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
 | 
						|
      /* Indices can only be used if all ORDER BY terms are either
 | 
						|
      ** DESC or ASC.  Indices cannot be used on a mixture. */
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
 | 
						|
      /* Do not sort by index if there is a COLLATE clause */
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    p = pOrderBy->a[i].pExpr;
 | 
						|
    if( p->op!=TK_COLUMN || p->iTable!=base ){
 | 
						|
      /* Can not use an index sort on anything that is not a column in the
 | 
						|
      ** left-most table of the FROM clause */
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* If we get this far, it means the ORDER BY clause consists only of
 | 
						|
  ** ascending columns in the left-most table of the FROM clause.  Now
 | 
						|
  ** check for a matching index.
 | 
						|
  */
 | 
						|
  pMatch = 0;
 | 
						|
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
						|
    int nExpr = pOrderBy->nExpr;
 | 
						|
    if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
 | 
						|
    for(i=j=0; i<nEqCol; i++){
 | 
						|
      if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
 | 
						|
      if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
 | 
						|
    }
 | 
						|
    if( i<nEqCol ) continue;
 | 
						|
    for(i=0; i+j<nExpr; i++){
 | 
						|
      if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
 | 
						|
    }
 | 
						|
    if( i+j>=nExpr ){
 | 
						|
      pMatch = pIdx;
 | 
						|
      if( pIdx==pPreferredIdx ) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pMatch && pbRev ){
 | 
						|
    *pbRev = sortOrder==SQLITE_SO_DESC;
 | 
						|
  }
 | 
						|
  return pMatch;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate the beginning of the loop used for WHERE clause processing.
 | 
						|
** The return value is a pointer to an (opaque) structure that contains
 | 
						|
** information needed to terminate the loop.  Later, the calling routine
 | 
						|
** should invoke sqliteWhereEnd() with the return value of this function
 | 
						|
** in order to complete the WHERE clause processing.
 | 
						|
**
 | 
						|
** If an error occurs, this routine returns NULL.
 | 
						|
**
 | 
						|
** The basic idea is to do a nested loop, one loop for each table in
 | 
						|
** the FROM clause of a select.  (INSERT and UPDATE statements are the
 | 
						|
** same as a SELECT with only a single table in the FROM clause.)  For
 | 
						|
** example, if the SQL is this:
 | 
						|
**
 | 
						|
**       SELECT * FROM t1, t2, t3 WHERE ...;
 | 
						|
**
 | 
						|
** Then the code generated is conceptually like the following:
 | 
						|
**
 | 
						|
**      foreach row1 in t1 do       \    Code generated
 | 
						|
**        foreach row2 in t2 do      |-- by sqliteWhereBegin()
 | 
						|
**          foreach row3 in t3 do   /
 | 
						|
**            ...
 | 
						|
**          end                     \    Code generated
 | 
						|
**        end                        |-- by sqliteWhereEnd()
 | 
						|
**      end                         /
 | 
						|
**
 | 
						|
** There are Btree cursors associated with each table.  t1 uses cursor
 | 
						|
** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
 | 
						|
** And so forth.  This routine generates code to open those VDBE cursors
 | 
						|
** and sqliteWhereEnd() generates the code to close them.
 | 
						|
**
 | 
						|
** If the WHERE clause is empty, the foreach loops must each scan their
 | 
						|
** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
 | 
						|
** the tables have indices and there are terms in the WHERE clause that
 | 
						|
** refer to those indices, a complete table scan can be avoided and the
 | 
						|
** code will run much faster.  Most of the work of this routine is checking
 | 
						|
** to see if there are indices that can be used to speed up the loop.
 | 
						|
**
 | 
						|
** Terms of the WHERE clause are also used to limit which rows actually
 | 
						|
** make it to the "..." in the middle of the loop.  After each "foreach",
 | 
						|
** terms of the WHERE clause that use only terms in that loop and outer
 | 
						|
** loops are evaluated and if false a jump is made around all subsequent
 | 
						|
** inner loops (or around the "..." if the test occurs within the inner-
 | 
						|
** most loop)
 | 
						|
**
 | 
						|
** OUTER JOINS
 | 
						|
**
 | 
						|
** An outer join of tables t1 and t2 is conceptally coded as follows:
 | 
						|
**
 | 
						|
**    foreach row1 in t1 do
 | 
						|
**      flag = 0
 | 
						|
**      foreach row2 in t2 do
 | 
						|
**        start:
 | 
						|
**          ...
 | 
						|
**          flag = 1
 | 
						|
**      end
 | 
						|
**      if flag==0 then
 | 
						|
**        move the row2 cursor to a null row
 | 
						|
**        goto start
 | 
						|
**      fi
 | 
						|
**    end
 | 
						|
**
 | 
						|
** ORDER BY CLAUSE PROCESSING
 | 
						|
**
 | 
						|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
 | 
						|
** if there is one.  If there is no ORDER BY clause or if this routine
 | 
						|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
 | 
						|
**
 | 
						|
** If an index can be used so that the natural output order of the table
 | 
						|
** scan is correct for the ORDER BY clause, then that index is used and
 | 
						|
** *ppOrderBy is set to NULL.  This is an optimization that prevents an
 | 
						|
** unnecessary sort of the result set if an index appropriate for the
 | 
						|
** ORDER BY clause already exists.
 | 
						|
**
 | 
						|
** If the where clause loops cannot be arranged to provide the correct
 | 
						|
** output order, then the *ppOrderBy is unchanged.
 | 
						|
*/
 | 
						|
WhereInfo *sqliteWhereBegin(
 | 
						|
  Parse *pParse,       /* The parser context */
 | 
						|
  SrcList *pTabList,   /* A list of all tables to be scanned */
 | 
						|
  Expr *pWhere,        /* The WHERE clause */
 | 
						|
  int pushKey,         /* If TRUE, leave the table key on the stack */
 | 
						|
  ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
 | 
						|
){
 | 
						|
  int i;                     /* Loop counter */
 | 
						|
  WhereInfo *pWInfo;         /* Will become the return value of this function */
 | 
						|
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
 | 
						|
  int brk, cont = 0;         /* Addresses used during code generation */
 | 
						|
  int nExpr;           /* Number of subexpressions in the WHERE clause */
 | 
						|
  int loopMask;        /* One bit set for each outer loop */
 | 
						|
  int haveKey;         /* True if KEY is on the stack */
 | 
						|
  ExprMaskSet maskSet; /* The expression mask set */
 | 
						|
  int iDirectEq[32];   /* Term of the form ROWID==X for the N-th table */
 | 
						|
  int iDirectLt[32];   /* Term of the form ROWID<X or ROWID<=X */
 | 
						|
  int iDirectGt[32];   /* Term of the form ROWID>X or ROWID>=X */
 | 
						|
  ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
 | 
						|
 | 
						|
  /* pushKey is only allowed if there is a single table (as in an INSERT or
 | 
						|
  ** UPDATE statement)
 | 
						|
  */
 | 
						|
  assert( pushKey==0 || pTabList->nSrc==1 );
 | 
						|
 | 
						|
  /* Split the WHERE clause into separate subexpressions where each
 | 
						|
  ** subexpression is separated by an AND operator.  If the aExpr[]
 | 
						|
  ** array fills up, the last entry might point to an expression which
 | 
						|
  ** contains additional unfactored AND operators.
 | 
						|
  */
 | 
						|
  initMaskSet(&maskSet);
 | 
						|
  memset(aExpr, 0, sizeof(aExpr));
 | 
						|
  nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
 | 
						|
  if( nExpr==ARRAYSIZE(aExpr) ){
 | 
						|
    sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
 | 
						|
       "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* Allocate and initialize the WhereInfo structure that will become the
 | 
						|
  ** return value.
 | 
						|
  */
 | 
						|
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
 | 
						|
  if( sqlite_malloc_failed ){
 | 
						|
    sqliteFree(pWInfo);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pWInfo->pParse = pParse;
 | 
						|
  pWInfo->pTabList = pTabList;
 | 
						|
  pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
 | 
						|
  pWInfo->iBreak = sqliteVdbeMakeLabel(v);
 | 
						|
 | 
						|
  /* Special case: a WHERE clause that is constant.  Evaluate the
 | 
						|
  ** expression and either jump over all of the code or fall thru.
 | 
						|
  */
 | 
						|
  if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
 | 
						|
    sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
 | 
						|
    pWhere = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Analyze all of the subexpressions.
 | 
						|
  */
 | 
						|
  for(i=0; i<nExpr; i++){
 | 
						|
    exprAnalyze(&maskSet, &aExpr[i]);
 | 
						|
 | 
						|
    /* If we are executing a trigger body, remove all references to
 | 
						|
    ** new.* and old.* tables from the prerequisite masks.
 | 
						|
    */
 | 
						|
    if( pParse->trigStack ){
 | 
						|
      int x;
 | 
						|
      if( (x = pParse->trigStack->newIdx) >= 0 ){
 | 
						|
        int mask = ~getMask(&maskSet, x);
 | 
						|
        aExpr[i].prereqRight &= mask;
 | 
						|
        aExpr[i].prereqLeft &= mask;
 | 
						|
        aExpr[i].prereqAll &= mask;
 | 
						|
      }
 | 
						|
      if( (x = pParse->trigStack->oldIdx) >= 0 ){
 | 
						|
        int mask = ~getMask(&maskSet, x);
 | 
						|
        aExpr[i].prereqRight &= mask;
 | 
						|
        aExpr[i].prereqLeft &= mask;
 | 
						|
        aExpr[i].prereqAll &= mask;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Figure out what index to use (if any) for each nested loop.
 | 
						|
  ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
 | 
						|
  ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
 | 
						|
  ** loop. 
 | 
						|
  **
 | 
						|
  ** If terms exist that use the ROWID of any table, then set the
 | 
						|
  ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
 | 
						|
  ** to the index of the term containing the ROWID.  We always prefer
 | 
						|
  ** to use a ROWID which can directly access a table rather than an
 | 
						|
  ** index which requires reading an index first to get the rowid then
 | 
						|
  ** doing a second read of the actual database table.
 | 
						|
  **
 | 
						|
  ** Actually, if there are more than 32 tables in the join, only the
 | 
						|
  ** first 32 tables are candidates for indices.  This is (again) due
 | 
						|
  ** to the limit of 32 bits in an integer bitmask.
 | 
						|
  */
 | 
						|
  loopMask = 0;
 | 
						|
  for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
 | 
						|
    int j;
 | 
						|
    int iCur = pTabList->a[i].iCursor;    /* The cursor for this table */
 | 
						|
    int mask = getMask(&maskSet, iCur);   /* Cursor mask for this table */
 | 
						|
    Table *pTab = pTabList->a[i].pTab;
 | 
						|
    Index *pIdx;
 | 
						|
    Index *pBestIdx = 0;
 | 
						|
    int bestScore = 0;
 | 
						|
 | 
						|
    /* Check to see if there is an expression that uses only the
 | 
						|
    ** ROWID field of this table.  For terms of the form ROWID==expr
 | 
						|
    ** set iDirectEq[i] to the index of the term.  For terms of the
 | 
						|
    ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
 | 
						|
    ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
 | 
						|
    **
 | 
						|
    ** (Added:) Treat ROWID IN expr like ROWID=expr.
 | 
						|
    */
 | 
						|
    pWInfo->a[i].iCur = -1;
 | 
						|
    iDirectEq[i] = -1;
 | 
						|
    iDirectLt[i] = -1;
 | 
						|
    iDirectGt[i] = -1;
 | 
						|
    for(j=0; j<nExpr; j++){
 | 
						|
      if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
 | 
						|
            && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
 | 
						|
        switch( aExpr[j].p->op ){
 | 
						|
          case TK_IN:
 | 
						|
          case TK_EQ: iDirectEq[i] = j; break;
 | 
						|
          case TK_LE:
 | 
						|
          case TK_LT: iDirectLt[i] = j; break;
 | 
						|
          case TK_GE:
 | 
						|
          case TK_GT: iDirectGt[i] = j;  break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
 | 
						|
            && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
 | 
						|
        switch( aExpr[j].p->op ){
 | 
						|
          case TK_EQ: iDirectEq[i] = j;  break;
 | 
						|
          case TK_LE:
 | 
						|
          case TK_LT: iDirectGt[i] = j;  break;
 | 
						|
          case TK_GE:
 | 
						|
          case TK_GT: iDirectLt[i] = j;  break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if( iDirectEq[i]>=0 ){
 | 
						|
      loopMask |= mask;
 | 
						|
      pWInfo->a[i].pIdx = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Do a search for usable indices.  Leave pBestIdx pointing to
 | 
						|
    ** the "best" index.  pBestIdx is left set to NULL if no indices
 | 
						|
    ** are usable.
 | 
						|
    **
 | 
						|
    ** The best index is determined as follows.  For each of the
 | 
						|
    ** left-most terms that is fixed by an equality operator, add
 | 
						|
    ** 8 to the score.  The right-most term of the index may be
 | 
						|
    ** constrained by an inequality.  Add 1 if for an "x<..." constraint
 | 
						|
    ** and add 2 for an "x>..." constraint.  Chose the index that
 | 
						|
    ** gives the best score.
 | 
						|
    **
 | 
						|
    ** This scoring system is designed so that the score can later be
 | 
						|
    ** used to determine how the index is used.  If the score&7 is 0
 | 
						|
    ** then all constraints are equalities.  If score&1 is not 0 then
 | 
						|
    ** there is an inequality used as a termination key.  (ex: "x<...")
 | 
						|
    ** If score&2 is not 0 then there is an inequality used as the
 | 
						|
    ** start key.  (ex: "x>...").  A score or 4 is the special case
 | 
						|
    ** of an IN operator constraint.  (ex:  "x IN ...").
 | 
						|
    **
 | 
						|
    ** The IN operator (as in "<expr> IN (...)") is treated the same as
 | 
						|
    ** an equality comparison except that it can only be used on the
 | 
						|
    ** left-most column of an index and other terms of the WHERE clause
 | 
						|
    ** cannot be used in conjunction with the IN operator to help satisfy
 | 
						|
    ** other columns of the index.
 | 
						|
    */
 | 
						|
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
						|
      int eqMask = 0;  /* Index columns covered by an x=... term */
 | 
						|
      int ltMask = 0;  /* Index columns covered by an x<... term */
 | 
						|
      int gtMask = 0;  /* Index columns covered by an x>... term */
 | 
						|
      int inMask = 0;  /* Index columns covered by an x IN .. term */
 | 
						|
      int nEq, m, score;
 | 
						|
 | 
						|
      if( pIdx->nColumn>32 ) continue;  /* Ignore indices too many columns */
 | 
						|
      for(j=0; j<nExpr; j++){
 | 
						|
        if( aExpr[j].idxLeft==iCur 
 | 
						|
             && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
 | 
						|
          int iColumn = aExpr[j].p->pLeft->iColumn;
 | 
						|
          int k;
 | 
						|
          for(k=0; k<pIdx->nColumn; k++){
 | 
						|
            if( pIdx->aiColumn[k]==iColumn ){
 | 
						|
              switch( aExpr[j].p->op ){
 | 
						|
                case TK_IN: {
 | 
						|
                  if( k==0 ) inMask |= 1;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
                case TK_EQ: {
 | 
						|
                  eqMask |= 1<<k;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
                case TK_LE:
 | 
						|
                case TK_LT: {
 | 
						|
                  ltMask |= 1<<k;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
                case TK_GE:
 | 
						|
                case TK_GT: {
 | 
						|
                  gtMask |= 1<<k;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
                default: {
 | 
						|
                  /* CANT_HAPPEN */
 | 
						|
                  assert( 0 );
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
              }
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if( aExpr[j].idxRight==iCur 
 | 
						|
             && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
 | 
						|
          int iColumn = aExpr[j].p->pRight->iColumn;
 | 
						|
          int k;
 | 
						|
          for(k=0; k<pIdx->nColumn; k++){
 | 
						|
            if( pIdx->aiColumn[k]==iColumn ){
 | 
						|
              switch( aExpr[j].p->op ){
 | 
						|
                case TK_EQ: {
 | 
						|
                  eqMask |= 1<<k;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
                case TK_LE:
 | 
						|
                case TK_LT: {
 | 
						|
                  gtMask |= 1<<k;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
                case TK_GE:
 | 
						|
                case TK_GT: {
 | 
						|
                  ltMask |= 1<<k;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
                default: {
 | 
						|
                  /* CANT_HAPPEN */
 | 
						|
                  assert( 0 );
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
              }
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* The following loop ends with nEq set to the number of columns
 | 
						|
      ** on the left of the index with == constraints.
 | 
						|
      */
 | 
						|
      for(nEq=0; nEq<pIdx->nColumn; nEq++){
 | 
						|
        m = (1<<(nEq+1))-1;
 | 
						|
        if( (m & eqMask)!=m ) break;
 | 
						|
      }
 | 
						|
      score = nEq*8;   /* Base score is 8 times number of == constraints */
 | 
						|
      m = 1<<nEq;
 | 
						|
      if( m & ltMask ) score++;    /* Increase score for a < constraint */
 | 
						|
      if( m & gtMask ) score+=2;   /* Increase score for a > constraint */
 | 
						|
      if( score==0 && inMask ) score = 4;  /* Default score for IN constraint */
 | 
						|
      if( score>bestScore ){
 | 
						|
        pBestIdx = pIdx;
 | 
						|
        bestScore = score;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    pWInfo->a[i].pIdx = pBestIdx;
 | 
						|
    pWInfo->a[i].score = bestScore;
 | 
						|
    pWInfo->a[i].bRev = 0;
 | 
						|
    loopMask |= mask;
 | 
						|
    if( pBestIdx ){
 | 
						|
      pWInfo->a[i].iCur = pParse->nTab++;
 | 
						|
      pWInfo->peakNTab = pParse->nTab;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check to see if the ORDER BY clause is or can be satisfied by the
 | 
						|
  ** use of an index on the first table.
 | 
						|
  */
 | 
						|
  if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
 | 
						|
     Index *pSortIdx;
 | 
						|
     Index *pIdx;
 | 
						|
     Table *pTab;
 | 
						|
     int bRev = 0;
 | 
						|
 | 
						|
     pTab = pTabList->a[0].pTab;
 | 
						|
     pIdx = pWInfo->a[0].pIdx;
 | 
						|
     if( pIdx && pWInfo->a[0].score==4 ){
 | 
						|
       /* If there is already an IN index on the left-most table,
 | 
						|
       ** it will not give the correct sort order.
 | 
						|
       ** So, pretend that no suitable index is found.
 | 
						|
       */
 | 
						|
       pSortIdx = 0;
 | 
						|
     }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
 | 
						|
       /* If the left-most column is accessed using its ROWID, then do
 | 
						|
       ** not try to sort by index.
 | 
						|
       */
 | 
						|
       pSortIdx = 0;
 | 
						|
     }else{
 | 
						|
       int nEqCol = (pWInfo->a[0].score+4)/8;
 | 
						|
       pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor, 
 | 
						|
                                   *ppOrderBy, pIdx, nEqCol, &bRev);
 | 
						|
     }
 | 
						|
     if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
 | 
						|
       if( pIdx==0 ){
 | 
						|
         pWInfo->a[0].pIdx = pSortIdx;
 | 
						|
         pWInfo->a[0].iCur = pParse->nTab++;
 | 
						|
         pWInfo->peakNTab = pParse->nTab;
 | 
						|
       }
 | 
						|
       pWInfo->a[0].bRev = bRev;
 | 
						|
       *ppOrderBy = 0;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Open all tables in the pTabList and all indices used by those tables.
 | 
						|
  */
 | 
						|
  for(i=0; i<pTabList->nSrc; i++){
 | 
						|
    Table *pTab;
 | 
						|
    Index *pIx;
 | 
						|
 | 
						|
    pTab = pTabList->a[i].pTab;
 | 
						|
    if( pTab->isTransient || pTab->pSelect ) continue;
 | 
						|
    sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
 | 
						|
    sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
 | 
						|
                     pTab->zName, P3_STATIC);
 | 
						|
    sqliteCodeVerifySchema(pParse, pTab->iDb);
 | 
						|
    if( (pIx = pWInfo->a[i].pIdx)!=0 ){
 | 
						|
      sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
 | 
						|
      sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Generate the code to do the search
 | 
						|
  */
 | 
						|
  loopMask = 0;
 | 
						|
  for(i=0; i<pTabList->nSrc; i++){
 | 
						|
    int j, k;
 | 
						|
    int iCur = pTabList->a[i].iCursor;
 | 
						|
    Index *pIdx;
 | 
						|
    WhereLevel *pLevel = &pWInfo->a[i];
 | 
						|
 | 
						|
    /* If this is the right table of a LEFT OUTER JOIN, allocate and
 | 
						|
    ** initialize a memory cell that records if this table matches any
 | 
						|
    ** row of the left table of the join.
 | 
						|
    */
 | 
						|
    if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
 | 
						|
      if( !pParse->nMem ) pParse->nMem++;
 | 
						|
      pLevel->iLeftJoin = pParse->nMem++;
 | 
						|
      sqliteVdbeAddOp(v, OP_String, 0, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    pIdx = pLevel->pIdx;
 | 
						|
    pLevel->inOp = OP_Noop;
 | 
						|
    if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
 | 
						|
      /* Case 1:  We can directly reference a single row using an
 | 
						|
      **          equality comparison against the ROWID field.  Or
 | 
						|
      **          we reference multiple rows using a "rowid IN (...)"
 | 
						|
      **          construct.
 | 
						|
      */
 | 
						|
      k = iDirectEq[i];
 | 
						|
      assert( k<nExpr );
 | 
						|
      assert( aExpr[k].p!=0 );
 | 
						|
      assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
 | 
						|
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
 | 
						|
      if( aExpr[k].idxLeft==iCur ){
 | 
						|
        Expr *pX = aExpr[k].p;
 | 
						|
        if( pX->op!=TK_IN ){
 | 
						|
          sqliteExprCode(pParse, aExpr[k].p->pRight);
 | 
						|
        }else if( pX->pList ){
 | 
						|
          sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
 | 
						|
          pLevel->inOp = OP_SetNext;
 | 
						|
          pLevel->inP1 = pX->iTable;
 | 
						|
          pLevel->inP2 = sqliteVdbeCurrentAddr(v);
 | 
						|
        }else{
 | 
						|
          assert( pX->pSelect );
 | 
						|
          sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
 | 
						|
          sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
 | 
						|
          pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
 | 
						|
          pLevel->inOp = OP_Next;
 | 
						|
          pLevel->inP1 = pX->iTable;
 | 
						|
        }
 | 
						|
      }else{
 | 
						|
        sqliteExprCode(pParse, aExpr[k].p->pLeft);
 | 
						|
      }
 | 
						|
      aExpr[k].p = 0;
 | 
						|
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
 | 
						|
      haveKey = 0;
 | 
						|
      sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
 | 
						|
      pLevel->op = OP_Noop;
 | 
						|
    }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
 | 
						|
      /* Case 2:  There is an index and all terms of the WHERE clause that
 | 
						|
      **          refer to the index use the "==" or "IN" operators.
 | 
						|
      */
 | 
						|
      int start;
 | 
						|
      int testOp;
 | 
						|
      int nColumn = (pLevel->score+4)/8;
 | 
						|
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
 | 
						|
      for(j=0; j<nColumn; j++){
 | 
						|
        for(k=0; k<nExpr; k++){
 | 
						|
          Expr *pX = aExpr[k].p;
 | 
						|
          if( pX==0 ) continue;
 | 
						|
          if( aExpr[k].idxLeft==iCur
 | 
						|
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
 | 
						|
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            if( pX->op==TK_EQ ){
 | 
						|
              sqliteExprCode(pParse, pX->pRight);
 | 
						|
              aExpr[k].p = 0;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            if( pX->op==TK_IN && nColumn==1 ){
 | 
						|
              if( pX->pList ){
 | 
						|
                sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
 | 
						|
                pLevel->inOp = OP_SetNext;
 | 
						|
                pLevel->inP1 = pX->iTable;
 | 
						|
                pLevel->inP2 = sqliteVdbeCurrentAddr(v);
 | 
						|
              }else{
 | 
						|
                assert( pX->pSelect );
 | 
						|
                sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
 | 
						|
                sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
 | 
						|
                pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
 | 
						|
                pLevel->inOp = OP_Next;
 | 
						|
                pLevel->inP1 = pX->iTable;
 | 
						|
              }
 | 
						|
              aExpr[k].p = 0;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if( aExpr[k].idxRight==iCur
 | 
						|
             && aExpr[k].p->op==TK_EQ
 | 
						|
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
 | 
						|
             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            sqliteExprCode(pParse, aExpr[k].p->pLeft);
 | 
						|
            aExpr[k].p = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      pLevel->iMem = pParse->nMem++;
 | 
						|
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
 | 
						|
      sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, brk);
 | 
						|
      sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
 | 
						|
      sqliteAddIdxKeyType(v, pIdx);
 | 
						|
      if( nColumn==pIdx->nColumn || pLevel->bRev ){
 | 
						|
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
 | 
						|
        testOp = OP_IdxGT;
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_Dup, 0, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
						|
        testOp = OP_IdxGE;
 | 
						|
      }
 | 
						|
      if( pLevel->bRev ){
 | 
						|
        /* Scan in reverse order */
 | 
						|
        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
 | 
						|
        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
 | 
						|
        pLevel->op = OP_Prev;
 | 
						|
      }else{
 | 
						|
        /* Scan in the forward order */
 | 
						|
        sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
 | 
						|
        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
 | 
						|
        pLevel->op = OP_Next;
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
 | 
						|
      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
 | 
						|
      if( i==pTabList->nSrc-1 && pushKey ){
 | 
						|
        haveKey = 1;
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
 | 
						|
        haveKey = 0;
 | 
						|
      }
 | 
						|
      pLevel->p1 = pLevel->iCur;
 | 
						|
      pLevel->p2 = start;
 | 
						|
    }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
 | 
						|
      /* Case 3:  We have an inequality comparison against the ROWID field.
 | 
						|
      */
 | 
						|
      int testOp = OP_Noop;
 | 
						|
      int start;
 | 
						|
 | 
						|
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
 | 
						|
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
 | 
						|
      if( iDirectGt[i]>=0 ){
 | 
						|
        k = iDirectGt[i];
 | 
						|
        assert( k<nExpr );
 | 
						|
        assert( aExpr[k].p!=0 );
 | 
						|
        assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
 | 
						|
        if( aExpr[k].idxLeft==iCur ){
 | 
						|
          sqliteExprCode(pParse, aExpr[k].p->pRight);
 | 
						|
        }else{
 | 
						|
          sqliteExprCode(pParse, aExpr[k].p->pLeft);
 | 
						|
        }
 | 
						|
        sqliteVdbeAddOp(v, OP_ForceInt,
 | 
						|
          aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
 | 
						|
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
 | 
						|
        aExpr[k].p = 0;
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
 | 
						|
      }
 | 
						|
      if( iDirectLt[i]>=0 ){
 | 
						|
        k = iDirectLt[i];
 | 
						|
        assert( k<nExpr );
 | 
						|
        assert( aExpr[k].p!=0 );
 | 
						|
        assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
 | 
						|
        if( aExpr[k].idxLeft==iCur ){
 | 
						|
          sqliteExprCode(pParse, aExpr[k].p->pRight);
 | 
						|
        }else{
 | 
						|
          sqliteExprCode(pParse, aExpr[k].p->pLeft);
 | 
						|
        }
 | 
						|
        /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
 | 
						|
        pLevel->iMem = pParse->nMem++;
 | 
						|
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
						|
        if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
 | 
						|
          testOp = OP_Ge;
 | 
						|
        }else{
 | 
						|
          testOp = OP_Gt;
 | 
						|
        }
 | 
						|
        aExpr[k].p = 0;
 | 
						|
      }
 | 
						|
      start = sqliteVdbeCurrentAddr(v);
 | 
						|
      pLevel->op = OP_Next;
 | 
						|
      pLevel->p1 = iCur;
 | 
						|
      pLevel->p2 = start;
 | 
						|
      if( testOp!=OP_Noop ){
 | 
						|
        sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqliteVdbeAddOp(v, testOp, 0, brk);
 | 
						|
      }
 | 
						|
      haveKey = 0;
 | 
						|
    }else if( pIdx==0 ){
 | 
						|
      /* Case 4:  There is no usable index.  We must do a complete
 | 
						|
      **          scan of the entire database table.
 | 
						|
      */
 | 
						|
      int start;
 | 
						|
 | 
						|
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
 | 
						|
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
 | 
						|
      start = sqliteVdbeCurrentAddr(v);
 | 
						|
      pLevel->op = OP_Next;
 | 
						|
      pLevel->p1 = iCur;
 | 
						|
      pLevel->p2 = start;
 | 
						|
      haveKey = 0;
 | 
						|
    }else{
 | 
						|
      /* Case 5: The WHERE clause term that refers to the right-most
 | 
						|
      **         column of the index is an inequality.  For example, if
 | 
						|
      **         the index is on (x,y,z) and the WHERE clause is of the
 | 
						|
      **         form "x=5 AND y<10" then this case is used.  Only the
 | 
						|
      **         right-most column can be an inequality - the rest must
 | 
						|
      **         use the "==" operator.
 | 
						|
      **
 | 
						|
      **         This case is also used when there are no WHERE clause
 | 
						|
      **         constraints but an index is selected anyway, in order
 | 
						|
      **         to force the output order to conform to an ORDER BY.
 | 
						|
      */
 | 
						|
      int score = pLevel->score;
 | 
						|
      int nEqColumn = score/8;
 | 
						|
      int start;
 | 
						|
      int leFlag, geFlag;
 | 
						|
      int testOp;
 | 
						|
 | 
						|
      /* Evaluate the equality constraints
 | 
						|
      */
 | 
						|
      for(j=0; j<nEqColumn; j++){
 | 
						|
        for(k=0; k<nExpr; k++){
 | 
						|
          if( aExpr[k].p==0 ) continue;
 | 
						|
          if( aExpr[k].idxLeft==iCur
 | 
						|
             && aExpr[k].p->op==TK_EQ
 | 
						|
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
 | 
						|
             && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            sqliteExprCode(pParse, aExpr[k].p->pRight);
 | 
						|
            aExpr[k].p = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          if( aExpr[k].idxRight==iCur
 | 
						|
             && aExpr[k].p->op==TK_EQ
 | 
						|
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
 | 
						|
             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            sqliteExprCode(pParse, aExpr[k].p->pLeft);
 | 
						|
            aExpr[k].p = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* Duplicate the equality term values because they will all be
 | 
						|
      ** used twice: once to make the termination key and once to make the
 | 
						|
      ** start key.
 | 
						|
      */
 | 
						|
      for(j=0; j<nEqColumn; j++){
 | 
						|
        sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Labels for the beginning and end of the loop
 | 
						|
      */
 | 
						|
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
 | 
						|
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
 | 
						|
 | 
						|
      /* Generate the termination key.  This is the key value that
 | 
						|
      ** will end the search.  There is no termination key if there
 | 
						|
      ** are no equality terms and no "X<..." term.
 | 
						|
      **
 | 
						|
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
 | 
						|
      ** key computed here really ends up being the start key.
 | 
						|
      */
 | 
						|
      if( (score & 1)!=0 ){
 | 
						|
        for(k=0; k<nExpr; k++){
 | 
						|
          Expr *pExpr = aExpr[k].p;
 | 
						|
          if( pExpr==0 ) continue;
 | 
						|
          if( aExpr[k].idxLeft==iCur
 | 
						|
             && (pExpr->op==TK_LT || pExpr->op==TK_LE)
 | 
						|
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
 | 
						|
             && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
            leFlag = pExpr->op==TK_LE;
 | 
						|
            aExpr[k].p = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          if( aExpr[k].idxRight==iCur
 | 
						|
             && (pExpr->op==TK_GT || pExpr->op==TK_GE)
 | 
						|
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
 | 
						|
             && pExpr->pRight->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
            leFlag = pExpr->op==TK_GE;
 | 
						|
            aExpr[k].p = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        testOp = OP_IdxGE;
 | 
						|
      }else{
 | 
						|
        testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
 | 
						|
        leFlag = 1;
 | 
						|
      }
 | 
						|
      if( testOp!=OP_Noop ){
 | 
						|
        int nCol = nEqColumn + (score & 1);
 | 
						|
        pLevel->iMem = pParse->nMem++;
 | 
						|
        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
 | 
						|
        sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_Goto, 0, brk);
 | 
						|
        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
 | 
						|
        sqliteAddIdxKeyType(v, pIdx);
 | 
						|
        if( leFlag ){
 | 
						|
          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
 | 
						|
        }
 | 
						|
        if( pLevel->bRev ){
 | 
						|
          sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
 | 
						|
        }else{
 | 
						|
          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
						|
        }
 | 
						|
      }else if( pLevel->bRev ){
 | 
						|
        sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Generate the start key.  This is the key that defines the lower
 | 
						|
      ** bound on the search.  There is no start key if there are no
 | 
						|
      ** equality terms and if there is no "X>..." term.  In
 | 
						|
      ** that case, generate a "Rewind" instruction in place of the
 | 
						|
      ** start key search.
 | 
						|
      **
 | 
						|
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
 | 
						|
      ** "start" key really ends up being used as the termination key.
 | 
						|
      */
 | 
						|
      if( (score & 2)!=0 ){
 | 
						|
        for(k=0; k<nExpr; k++){
 | 
						|
          Expr *pExpr = aExpr[k].p;
 | 
						|
          if( pExpr==0 ) continue;
 | 
						|
          if( aExpr[k].idxLeft==iCur
 | 
						|
             && (pExpr->op==TK_GT || pExpr->op==TK_GE)
 | 
						|
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
 | 
						|
             && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            sqliteExprCode(pParse, pExpr->pRight);
 | 
						|
            geFlag = pExpr->op==TK_GE;
 | 
						|
            aExpr[k].p = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          if( aExpr[k].idxRight==iCur
 | 
						|
             && (pExpr->op==TK_LT || pExpr->op==TK_LE)
 | 
						|
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
 | 
						|
             && pExpr->pRight->iColumn==pIdx->aiColumn[j]
 | 
						|
          ){
 | 
						|
            sqliteExprCode(pParse, pExpr->pLeft);
 | 
						|
            geFlag = pExpr->op==TK_LE;
 | 
						|
            aExpr[k].p = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }else{
 | 
						|
        geFlag = 1;
 | 
						|
      }
 | 
						|
      if( nEqColumn>0 || (score&2)!=0 ){
 | 
						|
        int nCol = nEqColumn + ((score&2)!=0);
 | 
						|
        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
 | 
						|
        sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
 | 
						|
        sqliteVdbeAddOp(v, OP_Goto, 0, brk);
 | 
						|
        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
 | 
						|
        sqliteAddIdxKeyType(v, pIdx);
 | 
						|
        if( !geFlag ){
 | 
						|
          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
 | 
						|
        }
 | 
						|
        if( pLevel->bRev ){
 | 
						|
          pLevel->iMem = pParse->nMem++;
 | 
						|
          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
						|
          testOp = OP_IdxLT;
 | 
						|
        }else{
 | 
						|
          sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
 | 
						|
        }
 | 
						|
      }else if( pLevel->bRev ){
 | 
						|
        testOp = OP_Noop;
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Generate the the top of the loop.  If there is a termination
 | 
						|
      ** key we have to test for that key and abort at the top of the
 | 
						|
      ** loop.
 | 
						|
      */
 | 
						|
      start = sqliteVdbeCurrentAddr(v);
 | 
						|
      if( testOp!=OP_Noop ){
 | 
						|
        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
 | 
						|
      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
 | 
						|
      if( i==pTabList->nSrc-1 && pushKey ){
 | 
						|
        haveKey = 1;
 | 
						|
      }else{
 | 
						|
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
 | 
						|
        haveKey = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Record the instruction used to terminate the loop.
 | 
						|
      */
 | 
						|
      pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
 | 
						|
      pLevel->p1 = pLevel->iCur;
 | 
						|
      pLevel->p2 = start;
 | 
						|
    }
 | 
						|
    loopMask |= getMask(&maskSet, iCur);
 | 
						|
 | 
						|
    /* Insert code to test every subexpression that can be completely
 | 
						|
    ** computed using the current set of tables.
 | 
						|
    */
 | 
						|
    for(j=0; j<nExpr; j++){
 | 
						|
      if( aExpr[j].p==0 ) continue;
 | 
						|
      if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
 | 
						|
      if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if( haveKey ){
 | 
						|
        haveKey = 0;
 | 
						|
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
 | 
						|
      }
 | 
						|
      sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
 | 
						|
      aExpr[j].p = 0;
 | 
						|
    }
 | 
						|
    brk = cont;
 | 
						|
 | 
						|
    /* For a LEFT OUTER JOIN, generate code that will record the fact that
 | 
						|
    ** at least one row of the right table has matched the left table.  
 | 
						|
    */
 | 
						|
    if( pLevel->iLeftJoin ){
 | 
						|
      pLevel->top = sqliteVdbeCurrentAddr(v);
 | 
						|
      sqliteVdbeAddOp(v, OP_Integer, 1, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
 | 
						|
      for(j=0; j<nExpr; j++){
 | 
						|
        if( aExpr[j].p==0 ) continue;
 | 
						|
        if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
 | 
						|
        if( haveKey ){
 | 
						|
          /* Cannot happen.  "haveKey" can only be true if pushKey is true
 | 
						|
          ** an pushKey can only be true for DELETE and UPDATE and there are
 | 
						|
          ** no outer joins with DELETE and UPDATE.
 | 
						|
          */
 | 
						|
          haveKey = 0;
 | 
						|
          sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
 | 
						|
        }
 | 
						|
        sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
 | 
						|
        aExpr[j].p = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  pWInfo->iContinue = cont;
 | 
						|
  if( pushKey && !haveKey ){
 | 
						|
    sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
 | 
						|
  }
 | 
						|
  freeMaskSet(&maskSet);
 | 
						|
  return pWInfo;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate the end of the WHERE loop.  See comments on 
 | 
						|
** sqliteWhereBegin() for additional information.
 | 
						|
*/
 | 
						|
void sqliteWhereEnd(WhereInfo *pWInfo){
 | 
						|
  Vdbe *v = pWInfo->pParse->pVdbe;
 | 
						|
  int i;
 | 
						|
  WhereLevel *pLevel;
 | 
						|
  SrcList *pTabList = pWInfo->pTabList;
 | 
						|
 | 
						|
  for(i=pTabList->nSrc-1; i>=0; i--){
 | 
						|
    pLevel = &pWInfo->a[i];
 | 
						|
    sqliteVdbeResolveLabel(v, pLevel->cont);
 | 
						|
    if( pLevel->op!=OP_Noop ){
 | 
						|
      sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
 | 
						|
    }
 | 
						|
    sqliteVdbeResolveLabel(v, pLevel->brk);
 | 
						|
    if( pLevel->inOp!=OP_Noop ){
 | 
						|
      sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
 | 
						|
    }
 | 
						|
    if( pLevel->iLeftJoin ){
 | 
						|
      int addr;
 | 
						|
      addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
 | 
						|
      sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
 | 
						|
      sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
 | 
						|
      if( pLevel->iCur>=0 ){
 | 
						|
        sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
 | 
						|
      }
 | 
						|
      sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  sqliteVdbeResolveLabel(v, pWInfo->iBreak);
 | 
						|
  for(i=0; i<pTabList->nSrc; i++){
 | 
						|
    Table *pTab = pTabList->a[i].pTab;
 | 
						|
    assert( pTab!=0 );
 | 
						|
    if( pTab->isTransient || pTab->pSelect ) continue;
 | 
						|
    pLevel = &pWInfo->a[i];
 | 
						|
    sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
 | 
						|
    if( pLevel->pIdx!=0 ){
 | 
						|
      sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#if 0  /* Never reuse a cursor */
 | 
						|
  if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
 | 
						|
    pWInfo->pParse->nTab = pWInfo->savedNTab;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  sqliteFree(pWInfo);
 | 
						|
  return;
 | 
						|
}
 |