campo-sirio/pdf/pdcore/pc_geom.c
alex c434cad322 Patch level : 4.0 451
Files correlati     :
Ricompilazione Demo : [ ]
Commento            :

Riportata la versione 3.1 patch 650


git-svn-id: svn://10.65.10.50/trunk@14148 c028cbd2-c16b-5b4b-a496-9718f37d4682
2006-07-11 13:10:51 +00:00

437 lines
10 KiB
C
Executable File

/*---------------------------------------------------------------------------*
| PDFlib - A library for generating PDF on the fly |
+---------------------------------------------------------------------------+
| Copyright (c) 1997-2005 Thomas Merz and PDFlib GmbH. All rights reserved. |
+---------------------------------------------------------------------------+
| |
| This software is subject to the PDFlib license. It is NOT in the |
| public domain. Extended versions and commercial licenses are |
| available, please check http://www.pdflib.com. |
| |
*---------------------------------------------------------------------------*/
/* $Id: pc_geom.c,v 1.2 2006-07-11 13:10:33 alex Exp $
*
* Various geometry routines
*
*/
#include "pc_util.h"
#include "pc_geom.h"
/* ---------------------- matrix functions ----------------------------- */
pdc_bool
pdc_is_identity_matrix(pdc_matrix *m)
{
return (m->a == 1 && m->b == 0 && m->c == 0 && m->d == 1 &&
m->e == 0 && m->f == 0);
}
/* identity matrix */
void
pdc_identity_matrix(pdc_matrix *M)
{
M->a = 1;
M->b = 0;
M->c = 0;
M->d = 1;
M->e = 0;
M->f = 0;
}
/* translation matrix */
void
pdc_translation_matrix(pdc_scalar tx, pdc_scalar ty, pdc_matrix *M)
{
M->a = 1;
M->b = 0;
M->c = 0;
M->d = 1;
M->e = tx;
M->f = ty;
}
/* scale matrix */
void
pdc_scale_matrix(pdc_scalar sx, pdc_scalar sy, pdc_matrix *M)
{
M->a = sx;
M->b = 0;
M->c = 0;
M->d = sy;
M->e = 0;
M->f = 0;
}
/* rotation matrix */
void
pdc_rotation_matrix(pdc_scalar alpha, pdc_matrix *M)
{
pdc_scalar phi, c, s;
phi = alpha * PDC_DEG2RAD;
c = cos(phi);
s = sin(phi);
M->a = c;
M->b = s;
M->c = -s;
M->d = c;
M->e = 0;
M->f = 0;
}
/* skew matrix */
void
pdc_skew_matrix(pdc_scalar alpha, pdc_scalar beta, pdc_matrix *M)
{
M->a = 1;
M->b = tan(alpha * PDC_DEG2RAD);
M->c = tan(beta * PDC_DEG2RAD);
M->d = 1;
M->e = 0;
M->f = 0;
}
/* N = M * N */
void
pdc_multiply_matrix(const pdc_matrix *M, pdc_matrix *N)
{
pdc_matrix result;
result.a = M->a * N->a + M->b * N->c;
result.b = M->a * N->b + M->b * N->d;
result.c = M->c * N->a + M->d * N->c;
result.d = M->c * N->b + M->d * N->d;
result.e = M->e * N->a + M->f * N->c + N->e;
result.f = M->e * N->b + M->f * N->d + N->f;
*N = result;
}
/* L = M * N */
void
pdc_multiply_matrix3(pdc_matrix *L, const pdc_matrix *M, const pdc_matrix *N)
{
L->a = M->a * N->a + M->b * N->c;
L->b = M->a * N->b + M->b * N->d;
L->c = M->c * N->a + M->d * N->c;
L->d = M->c * N->b + M->d * N->d;
L->e = M->e * N->a + M->f * N->c + N->e;
L->f = M->e * N->b + M->f * N->d + N->f;
}
/* M = [a b c d e f] * M; */
void
pdc_multiply_6s_matrix(pdc_matrix *M, pdc_scalar a, pdc_scalar b, pdc_scalar c,
pdc_scalar d, pdc_scalar e, pdc_scalar f)
{
pdc_matrix result;
result.a = a * M->a + b * M->c;
result.b = a * M->b + b * M->d;
result.c = c * M->a + d * M->c;
result.d = c * M->b + d * M->d;
result.e = e * M->a + f * M->c + M->e;
result.f = e * M->b + f * M->d + M->f;
*M = result;
}
/* invert M and store the result in N */
void
pdc_invert_matrix(pdc_core *pdc, pdc_matrix *N, pdc_matrix *M)
{
pdc_scalar det = M->a * M->d - M->b * M->c;
if (fabs(det) < PDC_SMALLREAL * PDC_SMALLREAL)
pdc_error(pdc, PDC_E_INT_INVMATRIX,
pdc_errprintf(pdc, "%f %f %f %f %f %f",
M->a, M->b, M->c, M->d, M->e, M->f),
0, 0, 0);
N->a = M->d/det;
N->b = -M->b/det;
N->c = -M->c/det;
N->d = M->a/det;
N->e = -(M->e * N->a + M->f * N->c);
N->f = -(M->e * N->b + M->f * N->d);
}
/* debug print */
void
pdc_print_matrix(const char *name, pdc_matrix *M)
{
printf("%s: a=%g, b=%g, c=%g, d=%g, e=%g, f=%g\n",
name, M->a, M->b, M->c, M->d, M->e, M->f);
}
/* transform scalar */
pdc_scalar
pdc_transform_scalar(const pdc_matrix *M, pdc_scalar s)
{
pdc_scalar det = M->a * M->d - M->b * M->c;
return sqrt(fabs(det)) * s;
}
/* transform point */
void
pdc_transform_point(const pdc_matrix *M, pdc_scalar x, pdc_scalar y,
pdc_scalar *tx, pdc_scalar *ty)
{
*tx = M->a * x + M->c * y + M->e;
*ty = M->b * x + M->d * y + M->f;
}
/* transform vector */
void
pdc_transform_vector(const pdc_matrix *M, pdc_vector *v, pdc_vector *tv)
{
pdc_scalar tx = M->a * v->x + M->c * v->y + M->e;
pdc_scalar ty = M->b * v->x + M->d * v->y + M->f;
if (tv)
{
tv->x = tx;
tv->y = ty;
}
else
{
v->x = tx;
v->y = ty;
}
}
/* ---------------------- utility functions ----------------------------- */
void
pdc_place_element(pdc_fitmethod method, pdc_scalar minfscale,
const pdc_box *fitbox, const pdc_vector *relpos,
const pdc_vector *elemsize, pdc_box *elembox,
pdc_vector *scale)
{
pdc_vector refpos;
pdc_scalar width, height, det, fscale = 1.0;
pdc_bool xscaling = pdc_false;
/* reference position in fitbox */
width = fitbox->ur.x - fitbox->ll.x;
height = fitbox->ur.y - fitbox->ll.y;
refpos.x = fitbox->ll.x + relpos->x * width;
refpos.y = fitbox->ll.y + relpos->y * height;
/* first check */
switch (method)
{
case pdc_entire:
case pdc_slice:
case pdc_meet:
case pdc_tauto:
if (fabs(width) > PDC_FLOAT_PREC && fabs(height) > PDC_FLOAT_PREC)
{
if (method != pdc_entire)
{
det = elemsize->x * height - elemsize->y * width;
xscaling = (method == pdc_slice && det <= 0) ||
((method == pdc_meet || method == pdc_tauto) &&
det > 0) ? pdc_true : pdc_false;
if (xscaling)
fscale = width / elemsize->x;
else
fscale = height / elemsize->y;
}
if (method == pdc_tauto)
{
if(fscale >= 1.0)
{
method = pdc_nofit;
}
else if (fscale < minfscale)
{
method = pdc_meet;
}
}
}
else
{
method = pdc_nofit;
}
break;
default:
break;
}
/* calculation */
switch (method)
{
/* entire box is covered by entire element */
case pdc_entire:
*elembox = *fitbox;
scale->x = width / elemsize->x;
scale->y = height / elemsize->y;
return;
/* fit into and preserve aspect ratio */
case pdc_slice:
case pdc_meet:
if (xscaling)
height = fscale * elemsize->y;
else
width = fscale * elemsize->x;
scale->x = fscale;
scale->y = fscale;
break;
/* fit into and doesn't preserve aspect ratio */
case pdc_tauto:
if (xscaling)
{
height = elemsize->y;
scale->x = fscale;
scale->y = 1.0;
}
else
{
width = elemsize->x;
scale->x = 1.0;
scale->y = fscale;
}
break;
/* only positioning */
case pdc_nofit:
case pdc_clip:
width = elemsize->x;
height = elemsize->y;
scale->x = 1.0;
scale->y = 1.0;
break;
}
/* placed element box */
elembox->ll.x = refpos.x - relpos->x * width;
elembox->ll.y = refpos.y - relpos->y * height;
elembox->ur.x = refpos.x + (1.0 - relpos->x) * width;
elembox->ur.y = refpos.y + (1.0 - relpos->y) * height;
}
void
pdc_box2polyline(const pdc_box *box, pdc_vector *polyline)
{
/* counter clockwise */
polyline[0].x = box->ll.x;
polyline[0].y = box->ll.y;
polyline[1].x = box->ur.x;
polyline[1].y = box->ll.y;
polyline[2].x = box->ur.x;
polyline[2].y = box->ur.y;
polyline[3].x = box->ll.x;
polyline[3].y = box->ur.y;
polyline[4] = polyline[0];
}
/* --------------------------- rectangles --------------------------- */
pdc_bool
pdc_rect_isnull(const pdc_rectangle *r)
{
if (!r)
return pdc_true;
return
(r->llx == 0 && r->lly == 0 &&
r->urx == 0 && r->ury == 0);
}
pdc_bool
pdc_rect_contains(const pdc_rectangle *r1, const pdc_rectangle *r2)
{
return
(r1->llx <= r2->llx && r1->lly <= r2->lly &&
r1->urx >= r2->urx && r1->ury >= r2->ury);
}
void
pdc_rect_copy(pdc_rectangle *r1, const pdc_rectangle *r2)
{
r1->llx = r2->llx;
r1->lly = r2->lly;
r1->urx = r2->urx;
r1->ury = r2->ury;
}
void
pdc_rect_init(pdc_rectangle *r, pdc_scalar llx, pdc_scalar lly,
pdc_scalar urx, pdc_scalar ury)
{
r->llx = llx;
r->lly = lly;
r->urx = urx;
r->ury = ury;
}
pdc_bool
pdc_rect_intersect(
pdc_rectangle *result,
const pdc_rectangle *r1,
const pdc_rectangle *r2)
{
if (r1->urx <= r2->llx ||
r2->urx <= r1->llx ||
r1->ury <= r2->lly ||
r2->ury <= r1->lly)
{
if (result)
{
result->llx = result->lly = result->urx = result->ury = 0;
}
return pdc_false;
}
if (result)
{
result->llx = MAX(r1->llx, r2->llx);
result->urx = MIN(r1->urx, r2->urx);
result->lly = MAX(r1->lly, r2->lly);
result->ury = MIN(r1->ury, r2->ury);
}
return pdc_true;
}
void
pdc_rect_transform(const pdc_matrix *M, pdc_rectangle *r1, pdc_rectangle *r2)
{
pdc_scalar x[4], y[4];
int i;
pdc_transform_point(M, r1->llx, r1->lly, &x[0], &y[0]);
pdc_transform_point(M, r1->llx, r1->ury, &x[1], &y[1]);
pdc_transform_point(M, r1->urx, r1->ury, &x[2], &y[2]);
pdc_transform_point(M, r1->urx, r1->lly, &x[3], &y[3]);
pdc_rect_init(r2, PDC_FLOAT_MAX, PDC_FLOAT_MAX,
PDC_FLOAT_MIN, PDC_FLOAT_MIN);
for (i = 0; i < 4; i++)
{
if (x[i] < r2->llx)
r2->llx = x[i];
if (y[i] < r2->lly)
r2->lly = y[i];
if (x[i] > r2->urx)
r2->urx = x[i];
if (y[i] > r2->ury)
r2->ury = y[i];
}
}