Files correlati : sqlite Ricompilazione Demo : [ ] Commento : Passaggio da Sqlite 2 a Sqlite 3.3.5 git-svn-id: svn://10.65.10.50/trunk@13902 c028cbd2-c16b-5b4b-a496-9718f37d4682
		
			
				
	
	
		
			2137 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			2137 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
** 2001 September 15
 | 
						|
**
 | 
						|
** The author disclaims copyright to this source code.  In place of
 | 
						|
** a legal notice, here is a blessing:
 | 
						|
**
 | 
						|
**    May you do good and not evil.
 | 
						|
**    May you find forgiveness for yourself and forgive others.
 | 
						|
**    May you share freely, never taking more than you give.
 | 
						|
**
 | 
						|
*************************************************************************
 | 
						|
** This module contains C code that generates VDBE code used to process
 | 
						|
** the WHERE clause of SQL statements.  This module is reponsible for
 | 
						|
** generating the code that loops through a table looking for applicable
 | 
						|
** rows.  Indices are selected and used to speed the search when doing
 | 
						|
** so is applicable.  Because this module is responsible for selecting
 | 
						|
** indices, you might also think of this module as the "query optimizer".
 | 
						|
**
 | 
						|
** $Id: where.c,v 1.2 2006-04-13 12:44:29 guy Exp $
 | 
						|
*/
 | 
						|
#include "sqliteInt.h"
 | 
						|
 | 
						|
/*
 | 
						|
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
 | 
						|
*/
 | 
						|
#define BMS  (sizeof(Bitmask)*8)
 | 
						|
 | 
						|
/*
 | 
						|
** Determine the number of elements in an array.
 | 
						|
*/
 | 
						|
#define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))
 | 
						|
 | 
						|
/*
 | 
						|
** Trace output macros
 | 
						|
*/
 | 
						|
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
 | 
						|
int sqlite3_where_trace = 0;
 | 
						|
# define TRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
 | 
						|
#else
 | 
						|
# define TRACE(X)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Forward reference
 | 
						|
*/
 | 
						|
typedef struct WhereClause WhereClause;
 | 
						|
 | 
						|
/*
 | 
						|
** The query generator uses an array of instances of this structure to
 | 
						|
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
 | 
						|
** clause subexpression is separated from the others by an AND operator.
 | 
						|
**
 | 
						|
** All WhereTerms are collected into a single WhereClause structure.  
 | 
						|
** The following identity holds:
 | 
						|
**
 | 
						|
**        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
 | 
						|
**
 | 
						|
** When a term is of the form:
 | 
						|
**
 | 
						|
**              X <op> <expr>
 | 
						|
**
 | 
						|
** where X is a column name and <op> is one of certain operators,
 | 
						|
** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
 | 
						|
** cursor number and column number for X.  WhereTerm.operator records
 | 
						|
** the <op> using a bitmask encoding defined by WO_xxx below.  The
 | 
						|
** use of a bitmask encoding for the operator allows us to search
 | 
						|
** quickly for terms that match any of several different operators.
 | 
						|
**
 | 
						|
** prereqRight and prereqAll record sets of cursor numbers,
 | 
						|
** but they do so indirectly.  A single ExprMaskSet structure translates
 | 
						|
** cursor number into bits and the translated bit is stored in the prereq
 | 
						|
** fields.  The translation is used in order to maximize the number of
 | 
						|
** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
 | 
						|
** spread out over the non-negative integers.  For example, the cursor
 | 
						|
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
 | 
						|
** translates these sparse cursor numbers into consecutive integers
 | 
						|
** beginning with 0 in order to make the best possible use of the available
 | 
						|
** bits in the Bitmask.  So, in the example above, the cursor numbers
 | 
						|
** would be mapped into integers 0 through 7.
 | 
						|
*/
 | 
						|
typedef struct WhereTerm WhereTerm;
 | 
						|
struct WhereTerm {
 | 
						|
  Expr *pExpr;            /* Pointer to the subexpression */
 | 
						|
  i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
 | 
						|
  i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
 | 
						|
  i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
 | 
						|
  u16 eOperator;          /* A WO_xx value describing <op> */
 | 
						|
  u8 flags;               /* Bit flags.  See below */
 | 
						|
  u8 nChild;              /* Number of children that must disable us */
 | 
						|
  WhereClause *pWC;       /* The clause this term is part of */
 | 
						|
  Bitmask prereqRight;    /* Bitmask of tables used by pRight */
 | 
						|
  Bitmask prereqAll;      /* Bitmask of tables referenced by p */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** Allowed values of WhereTerm.flags
 | 
						|
*/
 | 
						|
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
 | 
						|
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
 | 
						|
#define TERM_CODED      0x04   /* This term is already coded */
 | 
						|
#define TERM_COPIED     0x08   /* Has a child */
 | 
						|
#define TERM_OR_OK      0x10   /* Used during OR-clause processing */
 | 
						|
 | 
						|
/*
 | 
						|
** An instance of the following structure holds all information about a
 | 
						|
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
 | 
						|
*/
 | 
						|
struct WhereClause {
 | 
						|
  Parse *pParse;           /* The parser context */
 | 
						|
  int nTerm;               /* Number of terms */
 | 
						|
  int nSlot;               /* Number of entries in a[] */
 | 
						|
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
 | 
						|
  WhereTerm aStatic[10];   /* Initial static space for a[] */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
** An instance of the following structure keeps track of a mapping
 | 
						|
** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
 | 
						|
**
 | 
						|
** The VDBE cursor numbers are small integers contained in 
 | 
						|
** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
 | 
						|
** clause, the cursor numbers might not begin with 0 and they might
 | 
						|
** contain gaps in the numbering sequence.  But we want to make maximum
 | 
						|
** use of the bits in our bitmasks.  This structure provides a mapping
 | 
						|
** from the sparse cursor numbers into consecutive integers beginning
 | 
						|
** with 0.
 | 
						|
**
 | 
						|
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
 | 
						|
** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
 | 
						|
**
 | 
						|
** For example, if the WHERE clause expression used these VDBE
 | 
						|
** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
 | 
						|
** would map those cursor numbers into bits 0 through 5.
 | 
						|
**
 | 
						|
** Note that the mapping is not necessarily ordered.  In the example
 | 
						|
** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
 | 
						|
** 57->5, 73->4.  Or one of 719 other combinations might be used. It
 | 
						|
** does not really matter.  What is important is that sparse cursor
 | 
						|
** numbers all get mapped into bit numbers that begin with 0 and contain
 | 
						|
** no gaps.
 | 
						|
*/
 | 
						|
typedef struct ExprMaskSet ExprMaskSet;
 | 
						|
struct ExprMaskSet {
 | 
						|
  int n;                        /* Number of assigned cursor values */
 | 
						|
  int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Bitmasks for the operators that indices are able to exploit.  An
 | 
						|
** OR-ed combination of these values can be used when searching for
 | 
						|
** terms in the where clause.
 | 
						|
*/
 | 
						|
#define WO_IN     1
 | 
						|
#define WO_EQ     2
 | 
						|
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
 | 
						|
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
 | 
						|
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
 | 
						|
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
 | 
						|
 | 
						|
/*
 | 
						|
** Value for flags returned by bestIndex()
 | 
						|
*/
 | 
						|
#define WHERE_ROWID_EQ       0x0001   /* rowid=EXPR or rowid IN (...) */
 | 
						|
#define WHERE_ROWID_RANGE    0x0002   /* rowid<EXPR and/or rowid>EXPR */
 | 
						|
#define WHERE_COLUMN_EQ      0x0010   /* x=EXPR or x IN (...) */
 | 
						|
#define WHERE_COLUMN_RANGE   0x0020   /* x<EXPR and/or x>EXPR */
 | 
						|
#define WHERE_COLUMN_IN      0x0040   /* x IN (...) */
 | 
						|
#define WHERE_TOP_LIMIT      0x0100   /* x<EXPR or x<=EXPR constraint */
 | 
						|
#define WHERE_BTM_LIMIT      0x0200   /* x>EXPR or x>=EXPR constraint */
 | 
						|
#define WHERE_IDX_ONLY       0x0800   /* Use index only - omit table */
 | 
						|
#define WHERE_ORDERBY        0x1000   /* Output will appear in correct order */
 | 
						|
#define WHERE_REVERSE        0x2000   /* Scan in reverse order */
 | 
						|
#define WHERE_UNIQUE         0x4000   /* Selects no more than one row */
 | 
						|
 | 
						|
/*
 | 
						|
** Initialize a preallocated WhereClause structure.
 | 
						|
*/
 | 
						|
static void whereClauseInit(WhereClause *pWC, Parse *pParse){
 | 
						|
  pWC->pParse = pParse;
 | 
						|
  pWC->nTerm = 0;
 | 
						|
  pWC->nSlot = ARRAYSIZE(pWC->aStatic);
 | 
						|
  pWC->a = pWC->aStatic;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Deallocate a WhereClause structure.  The WhereClause structure
 | 
						|
** itself is not freed.  This routine is the inverse of whereClauseInit().
 | 
						|
*/
 | 
						|
static void whereClauseClear(WhereClause *pWC){
 | 
						|
  int i;
 | 
						|
  WhereTerm *a;
 | 
						|
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
 | 
						|
    if( a->flags & TERM_DYNAMIC ){
 | 
						|
      sqlite3ExprDelete(a->pExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( pWC->a!=pWC->aStatic ){
 | 
						|
    sqliteFree(pWC->a);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Add a new entries to the WhereClause structure.  Increase the allocated
 | 
						|
** space as necessary.
 | 
						|
**
 | 
						|
** WARNING:  This routine might reallocate the space used to store
 | 
						|
** WhereTerms.  All pointers to WhereTerms should be invalided after
 | 
						|
** calling this routine.  Such pointers may be reinitialized by referencing
 | 
						|
** the pWC->a[] array.
 | 
						|
*/
 | 
						|
static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
 | 
						|
  WhereTerm *pTerm;
 | 
						|
  int idx;
 | 
						|
  if( pWC->nTerm>=pWC->nSlot ){
 | 
						|
    WhereTerm *pOld = pWC->a;
 | 
						|
    pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
 | 
						|
    if( pWC->a==0 ) return 0;
 | 
						|
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
 | 
						|
    if( pOld!=pWC->aStatic ){
 | 
						|
      sqliteFree(pOld);
 | 
						|
    }
 | 
						|
    pWC->nSlot *= 2;
 | 
						|
  }
 | 
						|
  pTerm = &pWC->a[idx = pWC->nTerm];
 | 
						|
  pWC->nTerm++;
 | 
						|
  pTerm->pExpr = p;
 | 
						|
  pTerm->flags = flags;
 | 
						|
  pTerm->pWC = pWC;
 | 
						|
  pTerm->iParent = -1;
 | 
						|
  return idx;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine identifies subexpressions in the WHERE clause where
 | 
						|
** each subexpression is separated by the AND operator or some other
 | 
						|
** operator specified in the op parameter.  The WhereClause structure
 | 
						|
** is filled with pointers to subexpressions.  For example:
 | 
						|
**
 | 
						|
**    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
 | 
						|
**           \________/     \_______________/     \________________/
 | 
						|
**            slot[0]            slot[1]               slot[2]
 | 
						|
**
 | 
						|
** The original WHERE clause in pExpr is unaltered.  All this routine
 | 
						|
** does is make slot[] entries point to substructure within pExpr.
 | 
						|
**
 | 
						|
** In the previous sentence and in the diagram, "slot[]" refers to
 | 
						|
** the WhereClause.a[] array.  This array grows as needed to contain
 | 
						|
** all terms of the WHERE clause.
 | 
						|
*/
 | 
						|
static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
 | 
						|
  if( pExpr==0 ) return;
 | 
						|
  if( pExpr->op!=op ){
 | 
						|
    whereClauseInsert(pWC, pExpr, 0);
 | 
						|
  }else{
 | 
						|
    whereSplit(pWC, pExpr->pLeft, op);
 | 
						|
    whereSplit(pWC, pExpr->pRight, op);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Initialize an expression mask set
 | 
						|
*/
 | 
						|
#define initMaskSet(P)  memset(P, 0, sizeof(*P))
 | 
						|
 | 
						|
/*
 | 
						|
** Return the bitmask for the given cursor number.  Return 0 if
 | 
						|
** iCursor is not in the set.
 | 
						|
*/
 | 
						|
static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
 | 
						|
  int i;
 | 
						|
  for(i=0; i<pMaskSet->n; i++){
 | 
						|
    if( pMaskSet->ix[i]==iCursor ){
 | 
						|
      return ((Bitmask)1)<<i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Create a new mask for cursor iCursor.
 | 
						|
**
 | 
						|
** There is one cursor per table in the FROM clause.  The number of
 | 
						|
** tables in the FROM clause is limited by a test early in the
 | 
						|
** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
 | 
						|
** array will never overflow.
 | 
						|
*/
 | 
						|
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
 | 
						|
  assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
 | 
						|
  pMaskSet->ix[pMaskSet->n++] = iCursor;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** This routine walks (recursively) an expression tree and generates
 | 
						|
** a bitmask indicating which tables are used in that expression
 | 
						|
** tree.
 | 
						|
**
 | 
						|
** In order for this routine to work, the calling function must have
 | 
						|
** previously invoked sqlite3ExprResolveNames() on the expression.  See
 | 
						|
** the header comment on that routine for additional information.
 | 
						|
** The sqlite3ExprResolveNames() routines looks for column names and
 | 
						|
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
 | 
						|
** the VDBE cursor number of the table.  This routine just has to
 | 
						|
** translate the cursor numbers into bitmask values and OR all
 | 
						|
** the bitmasks together.
 | 
						|
*/
 | 
						|
static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
 | 
						|
static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
 | 
						|
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
 | 
						|
  Bitmask mask = 0;
 | 
						|
  if( p==0 ) return 0;
 | 
						|
  if( p->op==TK_COLUMN ){
 | 
						|
    mask = getMask(pMaskSet, p->iTable);
 | 
						|
    return mask;
 | 
						|
  }
 | 
						|
  mask = exprTableUsage(pMaskSet, p->pRight);
 | 
						|
  mask |= exprTableUsage(pMaskSet, p->pLeft);
 | 
						|
  mask |= exprListTableUsage(pMaskSet, p->pList);
 | 
						|
  mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
 | 
						|
  return mask;
 | 
						|
}
 | 
						|
static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
 | 
						|
  int i;
 | 
						|
  Bitmask mask = 0;
 | 
						|
  if( pList ){
 | 
						|
    for(i=0; i<pList->nExpr; i++){
 | 
						|
      mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return mask;
 | 
						|
}
 | 
						|
static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
 | 
						|
  Bitmask mask;
 | 
						|
  if( pS==0 ){
 | 
						|
    mask = 0;
 | 
						|
  }else{
 | 
						|
    mask = exprListTableUsage(pMaskSet, pS->pEList);
 | 
						|
    mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
 | 
						|
    mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
 | 
						|
    mask |= exprTableUsage(pMaskSet, pS->pWhere);
 | 
						|
    mask |= exprTableUsage(pMaskSet, pS->pHaving);
 | 
						|
  }
 | 
						|
  return mask;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Return TRUE if the given operator is one of the operators that is
 | 
						|
** allowed for an indexable WHERE clause term.  The allowed operators are
 | 
						|
** "=", "<", ">", "<=", ">=", and "IN".
 | 
						|
*/
 | 
						|
static int allowedOp(int op){
 | 
						|
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
 | 
						|
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
 | 
						|
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
 | 
						|
  assert( TK_GE==TK_EQ+4 );
 | 
						|
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Swap two objects of type T.
 | 
						|
*/
 | 
						|
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
 | 
						|
 | 
						|
/*
 | 
						|
** Commute a comparision operator.  Expressions of the form "X op Y"
 | 
						|
** are converted into "Y op X".
 | 
						|
*/
 | 
						|
static void exprCommute(Expr *pExpr){
 | 
						|
  assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
 | 
						|
  SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
 | 
						|
  SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
 | 
						|
  if( pExpr->op>=TK_GT ){
 | 
						|
    assert( TK_LT==TK_GT+2 );
 | 
						|
    assert( TK_GE==TK_LE+2 );
 | 
						|
    assert( TK_GT>TK_EQ );
 | 
						|
    assert( TK_GT<TK_LE );
 | 
						|
    assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
 | 
						|
    pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Translate from TK_xx operator to WO_xx bitmask.
 | 
						|
*/
 | 
						|
static int operatorMask(int op){
 | 
						|
  int c;
 | 
						|
  assert( allowedOp(op) );
 | 
						|
  if( op==TK_IN ){
 | 
						|
    c = WO_IN;
 | 
						|
  }else{
 | 
						|
    c = WO_EQ<<(op-TK_EQ);
 | 
						|
  }
 | 
						|
  assert( op!=TK_IN || c==WO_IN );
 | 
						|
  assert( op!=TK_EQ || c==WO_EQ );
 | 
						|
  assert( op!=TK_LT || c==WO_LT );
 | 
						|
  assert( op!=TK_LE || c==WO_LE );
 | 
						|
  assert( op!=TK_GT || c==WO_GT );
 | 
						|
  assert( op!=TK_GE || c==WO_GE );
 | 
						|
  return c;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
 | 
						|
** where X is a reference to the iColumn of table iCur and <op> is one of
 | 
						|
** the WO_xx operator codes specified by the op parameter.
 | 
						|
** Return a pointer to the term.  Return 0 if not found.
 | 
						|
*/
 | 
						|
static WhereTerm *findTerm(
 | 
						|
  WhereClause *pWC,     /* The WHERE clause to be searched */
 | 
						|
  int iCur,             /* Cursor number of LHS */
 | 
						|
  int iColumn,          /* Column number of LHS */
 | 
						|
  Bitmask notReady,     /* RHS must not overlap with this mask */
 | 
						|
  u16 op,               /* Mask of WO_xx values describing operator */
 | 
						|
  Index *pIdx           /* Must be compatible with this index, if not NULL */
 | 
						|
){
 | 
						|
  WhereTerm *pTerm;
 | 
						|
  int k;
 | 
						|
  for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
 | 
						|
    if( pTerm->leftCursor==iCur
 | 
						|
       && (pTerm->prereqRight & notReady)==0
 | 
						|
       && pTerm->leftColumn==iColumn
 | 
						|
       && (pTerm->eOperator & op)!=0
 | 
						|
    ){
 | 
						|
      if( iCur>=0 && pIdx ){
 | 
						|
        Expr *pX = pTerm->pExpr;
 | 
						|
        CollSeq *pColl;
 | 
						|
        char idxaff;
 | 
						|
        int j;
 | 
						|
        Parse *pParse = pWC->pParse;
 | 
						|
 | 
						|
        idxaff = pIdx->pTable->aCol[iColumn].affinity;
 | 
						|
        if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
 | 
						|
        pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
 | 
						|
        if( !pColl ){
 | 
						|
          if( pX->pRight ){
 | 
						|
            pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
 | 
						|
          }
 | 
						|
          if( !pColl ){
 | 
						|
            pColl = pParse->db->pDfltColl;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
 | 
						|
        assert( j<pIdx->nColumn );
 | 
						|
        if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
 | 
						|
      }
 | 
						|
      return pTerm;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Forward reference */
 | 
						|
static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int);
 | 
						|
 | 
						|
/*
 | 
						|
** Call exprAnalyze on all terms in a WHERE clause.  
 | 
						|
**
 | 
						|
**
 | 
						|
*/
 | 
						|
static void exprAnalyzeAll(
 | 
						|
  SrcList *pTabList,       /* the FROM clause */
 | 
						|
  ExprMaskSet *pMaskSet,   /* table masks */
 | 
						|
  WhereClause *pWC         /* the WHERE clause to be analyzed */
 | 
						|
){
 | 
						|
  int i;
 | 
						|
  for(i=pWC->nTerm-1; i>=0; i--){
 | 
						|
    exprAnalyze(pTabList, pMaskSet, pWC, i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | 
						|
/*
 | 
						|
** Check to see if the given expression is a LIKE or GLOB operator that
 | 
						|
** can be optimized using inequality constraints.  Return TRUE if it is
 | 
						|
** so and false if not.
 | 
						|
**
 | 
						|
** In order for the operator to be optimizible, the RHS must be a string
 | 
						|
** literal that does not begin with a wildcard.  
 | 
						|
*/
 | 
						|
static int isLikeOrGlob(
 | 
						|
  sqlite3 *db,      /* The database */
 | 
						|
  Expr *pExpr,      /* Test this expression */
 | 
						|
  int *pnPattern,   /* Number of non-wildcard prefix characters */
 | 
						|
  int *pisComplete  /* True if the only wildcard is % in the last character */
 | 
						|
){
 | 
						|
  const char *z;
 | 
						|
  Expr *pRight, *pLeft;
 | 
						|
  ExprList *pList;
 | 
						|
  int c, cnt;
 | 
						|
  int noCase;
 | 
						|
  char wc[3];
 | 
						|
  CollSeq *pColl;
 | 
						|
 | 
						|
  if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pList = pExpr->pList;
 | 
						|
  pRight = pList->a[0].pExpr;
 | 
						|
  if( pRight->op!=TK_STRING ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pLeft = pList->a[1].pExpr;
 | 
						|
  if( pLeft->op!=TK_COLUMN ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  pColl = pLeft->pColl;
 | 
						|
  if( pColl==0 ){
 | 
						|
    pColl = db->pDfltColl;
 | 
						|
  }
 | 
						|
  if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
 | 
						|
      (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  sqlite3DequoteExpr(pRight);
 | 
						|
  z = (char *)pRight->token.z;
 | 
						|
  for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
 | 
						|
  if( cnt==0 || 255==(u8)z[cnt] ){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
 | 
						|
  *pnPattern = cnt;
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | 
						|
 | 
						|
/*
 | 
						|
** If the pBase expression originated in the ON or USING clause of
 | 
						|
** a join, then transfer the appropriate markings over to derived.
 | 
						|
*/
 | 
						|
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
 | 
						|
  pDerived->flags |= pBase->flags & EP_FromJoin;
 | 
						|
  pDerived->iRightJoinTable = pBase->iRightJoinTable;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** The input to this routine is an WhereTerm structure with only the
 | 
						|
** "pExpr" field filled in.  The job of this routine is to analyze the
 | 
						|
** subexpression and populate all the other fields of the WhereTerm
 | 
						|
** structure.
 | 
						|
**
 | 
						|
** If the expression is of the form "<expr> <op> X" it gets commuted
 | 
						|
** to the standard form of "X <op> <expr>".  If the expression is of
 | 
						|
** the form "X <op> Y" where both X and Y are columns, then the original
 | 
						|
** expression is unchanged and a new virtual expression of the form
 | 
						|
** "Y <op> X" is added to the WHERE clause and analyzed separately.
 | 
						|
*/
 | 
						|
static void exprAnalyze(
 | 
						|
  SrcList *pSrc,            /* the FROM clause */
 | 
						|
  ExprMaskSet *pMaskSet,    /* table masks */
 | 
						|
  WhereClause *pWC,         /* the WHERE clause */
 | 
						|
  int idxTerm               /* Index of the term to be analyzed */
 | 
						|
){
 | 
						|
  WhereTerm *pTerm = &pWC->a[idxTerm];
 | 
						|
  Expr *pExpr = pTerm->pExpr;
 | 
						|
  Bitmask prereqLeft;
 | 
						|
  Bitmask prereqAll;
 | 
						|
  int nPattern;
 | 
						|
  int isComplete;
 | 
						|
 | 
						|
  if( sqlite3MallocFailed() ) return;
 | 
						|
  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
 | 
						|
  if( pExpr->op==TK_IN ){
 | 
						|
    assert( pExpr->pRight==0 );
 | 
						|
    pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
 | 
						|
                          | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
 | 
						|
  }else{
 | 
						|
    pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
 | 
						|
  }
 | 
						|
  prereqAll = exprTableUsage(pMaskSet, pExpr);
 | 
						|
  if( ExprHasProperty(pExpr, EP_FromJoin) ){
 | 
						|
    prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
 | 
						|
  }
 | 
						|
  pTerm->prereqAll = prereqAll;
 | 
						|
  pTerm->leftCursor = -1;
 | 
						|
  pTerm->iParent = -1;
 | 
						|
  pTerm->eOperator = 0;
 | 
						|
  if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){
 | 
						|
    Expr *pLeft = pExpr->pLeft;
 | 
						|
    Expr *pRight = pExpr->pRight;
 | 
						|
    if( pLeft->op==TK_COLUMN ){
 | 
						|
      pTerm->leftCursor = pLeft->iTable;
 | 
						|
      pTerm->leftColumn = pLeft->iColumn;
 | 
						|
      pTerm->eOperator = operatorMask(pExpr->op);
 | 
						|
    }
 | 
						|
    if( pRight && pRight->op==TK_COLUMN ){
 | 
						|
      WhereTerm *pNew;
 | 
						|
      Expr *pDup;
 | 
						|
      if( pTerm->leftCursor>=0 ){
 | 
						|
        int idxNew;
 | 
						|
        pDup = sqlite3ExprDup(pExpr);
 | 
						|
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
						|
        if( idxNew==0 ) return;
 | 
						|
        pNew = &pWC->a[idxNew];
 | 
						|
        pNew->iParent = idxTerm;
 | 
						|
        pTerm = &pWC->a[idxTerm];
 | 
						|
        pTerm->nChild = 1;
 | 
						|
        pTerm->flags |= TERM_COPIED;
 | 
						|
      }else{
 | 
						|
        pDup = pExpr;
 | 
						|
        pNew = pTerm;
 | 
						|
      }
 | 
						|
      exprCommute(pDup);
 | 
						|
      pLeft = pDup->pLeft;
 | 
						|
      pNew->leftCursor = pLeft->iTable;
 | 
						|
      pNew->leftColumn = pLeft->iColumn;
 | 
						|
      pNew->prereqRight = prereqLeft;
 | 
						|
      pNew->prereqAll = prereqAll;
 | 
						|
      pNew->eOperator = operatorMask(pDup->op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
 | 
						|
  /* If a term is the BETWEEN operator, create two new virtual terms
 | 
						|
  ** that define the range that the BETWEEN implements.
 | 
						|
  */
 | 
						|
  else if( pExpr->op==TK_BETWEEN ){
 | 
						|
    ExprList *pList = pExpr->pList;
 | 
						|
    int i;
 | 
						|
    static const u8 ops[] = {TK_GE, TK_LE};
 | 
						|
    assert( pList!=0 );
 | 
						|
    assert( pList->nExpr==2 );
 | 
						|
    for(i=0; i<2; i++){
 | 
						|
      Expr *pNewExpr;
 | 
						|
      int idxNew;
 | 
						|
      pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
 | 
						|
                             sqlite3ExprDup(pList->a[i].pExpr), 0);
 | 
						|
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
						|
      exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
 | 
						|
      pTerm = &pWC->a[idxTerm];
 | 
						|
      pWC->a[idxNew].iParent = idxTerm;
 | 
						|
    }
 | 
						|
    pTerm->nChild = 2;
 | 
						|
  }
 | 
						|
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
 | 
						|
 | 
						|
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 | 
						|
  /* Attempt to convert OR-connected terms into an IN operator so that
 | 
						|
  ** they can make use of indices.  Example:
 | 
						|
  **
 | 
						|
  **      x = expr1  OR  expr2 = x  OR  x = expr3
 | 
						|
  **
 | 
						|
  ** is converted into
 | 
						|
  **
 | 
						|
  **      x IN (expr1,expr2,expr3)
 | 
						|
  **
 | 
						|
  ** This optimization must be omitted if OMIT_SUBQUERY is defined because
 | 
						|
  ** the compiler for the the IN operator is part of sub-queries.
 | 
						|
  */
 | 
						|
  else if( pExpr->op==TK_OR ){
 | 
						|
    int ok;
 | 
						|
    int i, j;
 | 
						|
    int iColumn, iCursor;
 | 
						|
    WhereClause sOr;
 | 
						|
    WhereTerm *pOrTerm;
 | 
						|
 | 
						|
    assert( (pTerm->flags & TERM_DYNAMIC)==0 );
 | 
						|
    whereClauseInit(&sOr, pWC->pParse);
 | 
						|
    whereSplit(&sOr, pExpr, TK_OR);
 | 
						|
    exprAnalyzeAll(pSrc, pMaskSet, &sOr);
 | 
						|
    assert( sOr.nTerm>0 );
 | 
						|
    j = 0;
 | 
						|
    do{
 | 
						|
      iColumn = sOr.a[j].leftColumn;
 | 
						|
      iCursor = sOr.a[j].leftCursor;
 | 
						|
      ok = iCursor>=0;
 | 
						|
      for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | 
						|
        if( pOrTerm->eOperator!=WO_EQ ){
 | 
						|
          goto or_not_possible;
 | 
						|
        }
 | 
						|
        if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){
 | 
						|
          pOrTerm->flags |= TERM_OR_OK;
 | 
						|
        }else if( (pOrTerm->flags & TERM_COPIED)!=0 ||
 | 
						|
                    ((pOrTerm->flags & TERM_VIRTUAL)!=0 &&
 | 
						|
                     (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){
 | 
						|
          pOrTerm->flags &= ~TERM_OR_OK;
 | 
						|
        }else{
 | 
						|
          ok = 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm );
 | 
						|
    if( ok ){
 | 
						|
      ExprList *pList = 0;
 | 
						|
      Expr *pNew, *pDup;
 | 
						|
      for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | 
						|
        if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
 | 
						|
        pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
 | 
						|
        pList = sqlite3ExprListAppend(pList, pDup, 0);
 | 
						|
      }
 | 
						|
      pDup = sqlite3Expr(TK_COLUMN, 0, 0, 0);
 | 
						|
      if( pDup ){
 | 
						|
        pDup->iTable = iCursor;
 | 
						|
        pDup->iColumn = iColumn;
 | 
						|
      }
 | 
						|
      pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
 | 
						|
      if( pNew ){
 | 
						|
        int idxNew;
 | 
						|
        transferJoinMarkings(pNew, pExpr);
 | 
						|
        pNew->pList = pList;
 | 
						|
        idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
						|
        exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
 | 
						|
        pTerm = &pWC->a[idxTerm];
 | 
						|
        pWC->a[idxNew].iParent = idxTerm;
 | 
						|
        pTerm->nChild = 1;
 | 
						|
      }else{
 | 
						|
        sqlite3ExprListDelete(pList);
 | 
						|
      }
 | 
						|
    }
 | 
						|
or_not_possible:
 | 
						|
    whereClauseClear(&sOr);
 | 
						|
  }
 | 
						|
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | 
						|
  /* Add constraints to reduce the search space on a LIKE or GLOB
 | 
						|
  ** operator.
 | 
						|
  */
 | 
						|
  if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
 | 
						|
    Expr *pLeft, *pRight;
 | 
						|
    Expr *pStr1, *pStr2;
 | 
						|
    Expr *pNewExpr1, *pNewExpr2;
 | 
						|
    int idxNew1, idxNew2;
 | 
						|
 | 
						|
    pLeft = pExpr->pList->a[1].pExpr;
 | 
						|
    pRight = pExpr->pList->a[0].pExpr;
 | 
						|
    pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
 | 
						|
    if( pStr1 ){
 | 
						|
      sqlite3TokenCopy(&pStr1->token, &pRight->token);
 | 
						|
      pStr1->token.n = nPattern;
 | 
						|
    }
 | 
						|
    pStr2 = sqlite3ExprDup(pStr1);
 | 
						|
    if( pStr2 ){
 | 
						|
      assert( pStr2->token.dyn );
 | 
						|
      ++*(u8*)&pStr2->token.z[nPattern-1];
 | 
						|
    }
 | 
						|
    pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
 | 
						|
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
						|
    exprAnalyze(pSrc, pMaskSet, pWC, idxNew1);
 | 
						|
    pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
 | 
						|
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
						|
    exprAnalyze(pSrc, pMaskSet, pWC, idxNew2);
 | 
						|
    pTerm = &pWC->a[idxTerm];
 | 
						|
    if( isComplete ){
 | 
						|
      pWC->a[idxNew1].iParent = idxTerm;
 | 
						|
      pWC->a[idxNew2].iParent = idxTerm;
 | 
						|
      pTerm->nChild = 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** This routine decides if pIdx can be used to satisfy the ORDER BY
 | 
						|
** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
 | 
						|
** ORDER BY clause, this routine returns 0.
 | 
						|
**
 | 
						|
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
 | 
						|
** left-most table in the FROM clause of that same SELECT statement and
 | 
						|
** the table has a cursor number of "base".  pIdx is an index on pTab.
 | 
						|
**
 | 
						|
** nEqCol is the number of columns of pIdx that are used as equality
 | 
						|
** constraints.  Any of these columns may be missing from the ORDER BY
 | 
						|
** clause and the match can still be a success.
 | 
						|
**
 | 
						|
** All terms of the ORDER BY that match against the index must be either
 | 
						|
** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
 | 
						|
** index do not need to satisfy this constraint.)  The *pbRev value is
 | 
						|
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
 | 
						|
** the ORDER BY clause is all ASC.
 | 
						|
*/
 | 
						|
static int isSortingIndex(
 | 
						|
  Parse *pParse,          /* Parsing context */
 | 
						|
  Index *pIdx,            /* The index we are testing */
 | 
						|
  int base,               /* Cursor number for the table to be sorted */
 | 
						|
  ExprList *pOrderBy,     /* The ORDER BY clause */
 | 
						|
  int nEqCol,             /* Number of index columns with == constraints */
 | 
						|
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | 
						|
){
 | 
						|
  int i, j;                       /* Loop counters */
 | 
						|
  int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
 | 
						|
  int nTerm;                      /* Number of ORDER BY terms */
 | 
						|
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
 | 
						|
  sqlite3 *db = pParse->db;
 | 
						|
 | 
						|
  assert( pOrderBy!=0 );
 | 
						|
  nTerm = pOrderBy->nExpr;
 | 
						|
  assert( nTerm>0 );
 | 
						|
 | 
						|
  /* Match terms of the ORDER BY clause against columns of
 | 
						|
  ** the index.
 | 
						|
  */
 | 
						|
  for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
 | 
						|
    Expr *pExpr;       /* The expression of the ORDER BY pTerm */
 | 
						|
    CollSeq *pColl;    /* The collating sequence of pExpr */
 | 
						|
    int termSortOrder; /* Sort order for this term */
 | 
						|
 | 
						|
    pExpr = pTerm->pExpr;
 | 
						|
    if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
 | 
						|
      /* Can not use an index sort on anything that is not a column in the
 | 
						|
      ** left-most table of the FROM clause */
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    pColl = sqlite3ExprCollSeq(pParse, pExpr);
 | 
						|
    if( !pColl ) pColl = db->pDfltColl;
 | 
						|
    if( pExpr->iColumn!=pIdx->aiColumn[i] || 
 | 
						|
        sqlite3StrICmp(pColl->zName, pIdx->azColl[i]) ){
 | 
						|
      /* Term j of the ORDER BY clause does not match column i of the index */
 | 
						|
      if( i<nEqCol ){
 | 
						|
        /* If an index column that is constrained by == fails to match an
 | 
						|
        ** ORDER BY term, that is OK.  Just ignore that column of the index
 | 
						|
        */
 | 
						|
        continue;
 | 
						|
      }else{
 | 
						|
        /* If an index column fails to match and is not constrained by ==
 | 
						|
        ** then the index cannot satisfy the ORDER BY constraint.
 | 
						|
        */
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert( pIdx->aSortOrder!=0 );
 | 
						|
    assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
 | 
						|
    assert( pIdx->aSortOrder[i]==0 || pIdx->aSortOrder[i]==1 );
 | 
						|
    termSortOrder = pIdx->aSortOrder[i] ^ pTerm->sortOrder;
 | 
						|
    if( i>nEqCol ){
 | 
						|
      if( termSortOrder!=sortOrder ){
 | 
						|
        /* Indices can only be used if all ORDER BY terms past the
 | 
						|
        ** equality constraints are all either DESC or ASC. */
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      sortOrder = termSortOrder;
 | 
						|
    }
 | 
						|
    j++;
 | 
						|
    pTerm++;
 | 
						|
  }
 | 
						|
 | 
						|
  /* The index can be used for sorting if all terms of the ORDER BY clause
 | 
						|
  ** are covered.
 | 
						|
  */
 | 
						|
  if( j>=nTerm ){
 | 
						|
    *pbRev = sortOrder!=0;
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
 | 
						|
** by sorting in order of ROWID.  Return true if so and set *pbRev to be
 | 
						|
** true for reverse ROWID and false for forward ROWID order.
 | 
						|
*/
 | 
						|
static int sortableByRowid(
 | 
						|
  int base,               /* Cursor number for table to be sorted */
 | 
						|
  ExprList *pOrderBy,     /* The ORDER BY clause */
 | 
						|
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | 
						|
){
 | 
						|
  Expr *p;
 | 
						|
 | 
						|
  assert( pOrderBy!=0 );
 | 
						|
  assert( pOrderBy->nExpr>0 );
 | 
						|
  p = pOrderBy->a[0].pExpr;
 | 
						|
  if( pOrderBy->nExpr==1 && p->op==TK_COLUMN && p->iTable==base
 | 
						|
          && p->iColumn==-1 ){
 | 
						|
    *pbRev = pOrderBy->a[0].sortOrder;
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Prepare a crude estimate of the logarithm of the input value.
 | 
						|
** The results need not be exact.  This is only used for estimating
 | 
						|
** the total cost of performing operatings with O(logN) or O(NlogN)
 | 
						|
** complexity.  Because N is just a guess, it is no great tragedy if
 | 
						|
** logN is a little off.
 | 
						|
*/
 | 
						|
static double estLog(double N){
 | 
						|
  double logN = 1;
 | 
						|
  double x = 10;
 | 
						|
  while( N>x ){
 | 
						|
    logN += 1;
 | 
						|
    x *= 10;
 | 
						|
  }
 | 
						|
  return logN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Find the best index for accessing a particular table.  Return a pointer
 | 
						|
** to the index, flags that describe how the index should be used, the
 | 
						|
** number of equality constraints, and the "cost" for this index.
 | 
						|
**
 | 
						|
** The lowest cost index wins.  The cost is an estimate of the amount of
 | 
						|
** CPU and disk I/O need to process the request using the selected index.
 | 
						|
** Factors that influence cost include:
 | 
						|
**
 | 
						|
**    *  The estimated number of rows that will be retrieved.  (The
 | 
						|
**       fewer the better.)
 | 
						|
**
 | 
						|
**    *  Whether or not sorting must occur.
 | 
						|
**
 | 
						|
**    *  Whether or not there must be separate lookups in the
 | 
						|
**       index and in the main table.
 | 
						|
**
 | 
						|
*/
 | 
						|
static double bestIndex(
 | 
						|
  Parse *pParse,              /* The parsing context */
 | 
						|
  WhereClause *pWC,           /* The WHERE clause */
 | 
						|
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
 | 
						|
  Bitmask notReady,           /* Mask of cursors that are not available */
 | 
						|
  ExprList *pOrderBy,         /* The order by clause */
 | 
						|
  Index **ppIndex,            /* Make *ppIndex point to the best index */
 | 
						|
  int *pFlags,                /* Put flags describing this choice in *pFlags */
 | 
						|
  int *pnEq                   /* Put the number of == or IN constraints here */
 | 
						|
){
 | 
						|
  WhereTerm *pTerm;
 | 
						|
  Index *bestIdx = 0;         /* Index that gives the lowest cost */
 | 
						|
  double lowestCost;          /* The cost of using bestIdx */
 | 
						|
  int bestFlags = 0;          /* Flags associated with bestIdx */
 | 
						|
  int bestNEq = 0;            /* Best value for nEq */
 | 
						|
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
 | 
						|
  Index *pProbe;              /* An index we are evaluating */
 | 
						|
  int rev;                    /* True to scan in reverse order */
 | 
						|
  int flags;                  /* Flags associated with pProbe */
 | 
						|
  int nEq;                    /* Number of == or IN constraints */
 | 
						|
  double cost;                /* Cost of using pProbe */
 | 
						|
 | 
						|
  TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
 | 
						|
  lowestCost = SQLITE_BIG_DBL;
 | 
						|
  pProbe = pSrc->pTab->pIndex;
 | 
						|
 | 
						|
  /* If the table has no indices and there are no terms in the where
 | 
						|
  ** clause that refer to the ROWID, then we will never be able to do
 | 
						|
  ** anything other than a full table scan on this table.  We might as
 | 
						|
  ** well put it first in the join order.  That way, perhaps it can be
 | 
						|
  ** referenced by other tables in the join.
 | 
						|
  */
 | 
						|
  if( pProbe==0 &&
 | 
						|
     findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
 | 
						|
     (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, &rev)) ){
 | 
						|
    *pFlags = 0;
 | 
						|
    *ppIndex = 0;
 | 
						|
    *pnEq = 0;
 | 
						|
    return 0.0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check for a rowid=EXPR or rowid IN (...) constraints
 | 
						|
  */
 | 
						|
  pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | 
						|
  if( pTerm ){
 | 
						|
    Expr *pExpr;
 | 
						|
    *ppIndex = 0;
 | 
						|
    bestFlags = WHERE_ROWID_EQ;
 | 
						|
    if( pTerm->eOperator & WO_EQ ){
 | 
						|
      /* Rowid== is always the best pick.  Look no further.  Because only
 | 
						|
      ** a single row is generated, output is always in sorted order */
 | 
						|
      *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
 | 
						|
      *pnEq = 1;
 | 
						|
      TRACE(("... best is rowid\n"));
 | 
						|
      return 0.0;
 | 
						|
    }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
 | 
						|
      /* Rowid IN (LIST): cost is NlogN where N is the number of list
 | 
						|
      ** elements.  */
 | 
						|
      lowestCost = pExpr->pList->nExpr;
 | 
						|
      lowestCost *= estLog(lowestCost);
 | 
						|
    }else{
 | 
						|
      /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
 | 
						|
      ** in the result of the inner select.  We have no way to estimate
 | 
						|
      ** that value so make a wild guess. */
 | 
						|
      lowestCost = 200;
 | 
						|
    }
 | 
						|
    TRACE(("... rowid IN cost: %.9g\n", lowestCost));
 | 
						|
  }
 | 
						|
 | 
						|
  /* Estimate the cost of a table scan.  If we do not know how many
 | 
						|
  ** entries are in the table, use 1 million as a guess.
 | 
						|
  */
 | 
						|
  cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
 | 
						|
  TRACE(("... table scan base cost: %.9g\n", cost));
 | 
						|
  flags = WHERE_ROWID_RANGE;
 | 
						|
 | 
						|
  /* Check for constraints on a range of rowids in a table scan.
 | 
						|
  */
 | 
						|
  pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
 | 
						|
  if( pTerm ){
 | 
						|
    if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
 | 
						|
      flags |= WHERE_TOP_LIMIT;
 | 
						|
      cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
 | 
						|
    }
 | 
						|
    if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
 | 
						|
      flags |= WHERE_BTM_LIMIT;
 | 
						|
      cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
 | 
						|
    }
 | 
						|
    TRACE(("... rowid range reduces cost to %.9g\n", cost));
 | 
						|
  }else{
 | 
						|
    flags = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the table scan does not satisfy the ORDER BY clause, increase
 | 
						|
  ** the cost by NlogN to cover the expense of sorting. */
 | 
						|
  if( pOrderBy ){
 | 
						|
    if( sortableByRowid(iCur, pOrderBy, &rev) ){
 | 
						|
      flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
 | 
						|
      if( rev ){
 | 
						|
        flags |= WHERE_REVERSE;
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      cost += cost*estLog(cost);
 | 
						|
      TRACE(("... sorting increases cost to %.9g\n", cost));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( cost<lowestCost ){
 | 
						|
    lowestCost = cost;
 | 
						|
    bestFlags = flags;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Look at each index.
 | 
						|
  */
 | 
						|
  for(; pProbe; pProbe=pProbe->pNext){
 | 
						|
    int i;                       /* Loop counter */
 | 
						|
    double inMultiplier = 1;
 | 
						|
 | 
						|
    TRACE(("... index %s:\n", pProbe->zName));
 | 
						|
 | 
						|
    /* Count the number of columns in the index that are satisfied
 | 
						|
    ** by x=EXPR constraints or x IN (...) constraints.
 | 
						|
    */
 | 
						|
    flags = 0;
 | 
						|
    for(i=0; i<pProbe->nColumn; i++){
 | 
						|
      int j = pProbe->aiColumn[i];
 | 
						|
      pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe);
 | 
						|
      if( pTerm==0 ) break;
 | 
						|
      flags |= WHERE_COLUMN_EQ;
 | 
						|
      if( pTerm->eOperator & WO_IN ){
 | 
						|
        Expr *pExpr = pTerm->pExpr;
 | 
						|
        flags |= WHERE_COLUMN_IN;
 | 
						|
        if( pExpr->pSelect!=0 ){
 | 
						|
          inMultiplier *= 100;
 | 
						|
        }else if( pExpr->pList!=0 ){
 | 
						|
          inMultiplier *= pExpr->pList->nExpr + 1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
 | 
						|
    nEq = i;
 | 
						|
    if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
 | 
						|
         && nEq==pProbe->nColumn ){
 | 
						|
      flags |= WHERE_UNIQUE;
 | 
						|
    }
 | 
						|
    TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
 | 
						|
 | 
						|
    /* Look for range constraints
 | 
						|
    */
 | 
						|
    if( nEq<pProbe->nColumn ){
 | 
						|
      int j = pProbe->aiColumn[nEq];
 | 
						|
      pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
 | 
						|
      if( pTerm ){
 | 
						|
        flags |= WHERE_COLUMN_RANGE;
 | 
						|
        if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
 | 
						|
          flags |= WHERE_TOP_LIMIT;
 | 
						|
          cost /= 3;
 | 
						|
        }
 | 
						|
        if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
 | 
						|
          flags |= WHERE_BTM_LIMIT;
 | 
						|
          cost /= 3;
 | 
						|
        }
 | 
						|
        TRACE(("...... range reduces cost to %.9g\n", cost));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Add the additional cost of sorting if that is a factor.
 | 
						|
    */
 | 
						|
    if( pOrderBy ){
 | 
						|
      if( (flags & WHERE_COLUMN_IN)==0 &&
 | 
						|
           isSortingIndex(pParse,pProbe,iCur,pOrderBy,nEq,&rev) ){
 | 
						|
        if( flags==0 ){
 | 
						|
          flags = WHERE_COLUMN_RANGE;
 | 
						|
        }
 | 
						|
        flags |= WHERE_ORDERBY;
 | 
						|
        if( rev ){
 | 
						|
          flags |= WHERE_REVERSE;
 | 
						|
        }
 | 
						|
      }else{
 | 
						|
        cost += cost*estLog(cost);
 | 
						|
        TRACE(("...... orderby increases cost to %.9g\n", cost));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check to see if we can get away with using just the index without
 | 
						|
    ** ever reading the table.  If that is the case, then halve the
 | 
						|
    ** cost of this index.
 | 
						|
    */
 | 
						|
    if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
 | 
						|
      Bitmask m = pSrc->colUsed;
 | 
						|
      int j;
 | 
						|
      for(j=0; j<pProbe->nColumn; j++){
 | 
						|
        int x = pProbe->aiColumn[j];
 | 
						|
        if( x<BMS-1 ){
 | 
						|
          m &= ~(((Bitmask)1)<<x);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if( m==0 ){
 | 
						|
        flags |= WHERE_IDX_ONLY;
 | 
						|
        cost /= 2;
 | 
						|
        TRACE(("...... idx-only reduces cost to %.9g\n", cost));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* If this index has achieved the lowest cost so far, then use it.
 | 
						|
    */
 | 
						|
    if( cost < lowestCost ){
 | 
						|
      bestIdx = pProbe;
 | 
						|
      lowestCost = cost;
 | 
						|
      assert( flags!=0 );
 | 
						|
      bestFlags = flags;
 | 
						|
      bestNEq = nEq;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Report the best result
 | 
						|
  */
 | 
						|
  *ppIndex = bestIdx;
 | 
						|
  TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
 | 
						|
        bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
 | 
						|
  *pFlags = bestFlags;
 | 
						|
  *pnEq = bestNEq;
 | 
						|
  return lowestCost;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Disable a term in the WHERE clause.  Except, do not disable the term
 | 
						|
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
 | 
						|
** or USING clause of that join.
 | 
						|
**
 | 
						|
** Consider the term t2.z='ok' in the following queries:
 | 
						|
**
 | 
						|
**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
 | 
						|
**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
 | 
						|
**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
 | 
						|
**
 | 
						|
** The t2.z='ok' is disabled in the in (2) because it originates
 | 
						|
** in the ON clause.  The term is disabled in (3) because it is not part
 | 
						|
** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
 | 
						|
**
 | 
						|
** Disabling a term causes that term to not be tested in the inner loop
 | 
						|
** of the join.  Disabling is an optimization.  When terms are satisfied
 | 
						|
** by indices, we disable them to prevent redundant tests in the inner
 | 
						|
** loop.  We would get the correct results if nothing were ever disabled,
 | 
						|
** but joins might run a little slower.  The trick is to disable as much
 | 
						|
** as we can without disabling too much.  If we disabled in (1), we'd get
 | 
						|
** the wrong answer.  See ticket #813.
 | 
						|
*/
 | 
						|
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
 | 
						|
  if( pTerm
 | 
						|
      && (pTerm->flags & TERM_CODED)==0
 | 
						|
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
 | 
						|
  ){
 | 
						|
    pTerm->flags |= TERM_CODED;
 | 
						|
    if( pTerm->iParent>=0 ){
 | 
						|
      WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
 | 
						|
      if( (--pOther->nChild)==0 ){
 | 
						|
        disableTerm(pLevel, pOther);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code that builds a probe for an index.  Details:
 | 
						|
**
 | 
						|
**    *  Check the top nColumn entries on the stack.  If any
 | 
						|
**       of those entries are NULL, jump immediately to brk,
 | 
						|
**       which is the loop exit, since no index entry will match
 | 
						|
**       if any part of the key is NULL. Pop (nColumn+nExtra) 
 | 
						|
**       elements from the stack.
 | 
						|
**
 | 
						|
**    *  Construct a probe entry from the top nColumn entries in
 | 
						|
**       the stack with affinities appropriate for index pIdx. 
 | 
						|
**       Only nColumn elements are popped from the stack in this case
 | 
						|
**       (by OP_MakeRecord).
 | 
						|
**
 | 
						|
*/
 | 
						|
static void buildIndexProbe(
 | 
						|
  Vdbe *v, 
 | 
						|
  int nColumn, 
 | 
						|
  int nExtra, 
 | 
						|
  int brk, 
 | 
						|
  Index *pIdx
 | 
						|
){
 | 
						|
  sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
 | 
						|
  sqlite3VdbeAddOp(v, OP_Pop, nColumn+nExtra, 0);
 | 
						|
  sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
 | 
						|
  sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
						|
  sqlite3IndexAffinityStr(v, pIdx);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code for a single equality term of the WHERE clause.  An equality
 | 
						|
** term can be either X=expr or X IN (...).   pTerm is the term to be 
 | 
						|
** coded.
 | 
						|
**
 | 
						|
** The current value for the constraint is left on the top of the stack.
 | 
						|
**
 | 
						|
** For a constraint of the form X=expr, the expression is evaluated and its
 | 
						|
** result is left on the stack.  For constraints of the form X IN (...)
 | 
						|
** this routine sets up a loop that will iterate over all values of X.
 | 
						|
*/
 | 
						|
static void codeEqualityTerm(
 | 
						|
  Parse *pParse,      /* The parsing context */
 | 
						|
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
 | 
						|
  int brk,            /* Jump here to abandon the loop */
 | 
						|
  WhereLevel *pLevel  /* When level of the FROM clause we are working on */
 | 
						|
){
 | 
						|
  Expr *pX = pTerm->pExpr;
 | 
						|
  if( pX->op!=TK_IN ){
 | 
						|
    assert( pX->op==TK_EQ );
 | 
						|
    sqlite3ExprCode(pParse, pX->pRight);
 | 
						|
#ifndef SQLITE_OMIT_SUBQUERY
 | 
						|
  }else{
 | 
						|
    int iTab;
 | 
						|
    int *aIn;
 | 
						|
    Vdbe *v = pParse->pVdbe;
 | 
						|
 | 
						|
    sqlite3CodeSubselect(pParse, pX);
 | 
						|
    iTab = pX->iTable;
 | 
						|
    sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
 | 
						|
    VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
 | 
						|
    pLevel->nIn++;
 | 
						|
    sqliteReallocOrFree((void**)&pLevel->aInLoop,
 | 
						|
                                 sizeof(pLevel->aInLoop[0])*3*pLevel->nIn);
 | 
						|
    aIn = pLevel->aInLoop;
 | 
						|
    if( aIn ){
 | 
						|
      aIn += pLevel->nIn*3 - 3;
 | 
						|
      aIn[0] = OP_Next;
 | 
						|
      aIn[1] = iTab;
 | 
						|
      aIn[2] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
 | 
						|
    }else{
 | 
						|
      pLevel->nIn = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  disableTerm(pLevel, pTerm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate code that will evaluate all == and IN constraints for an
 | 
						|
** index.  The values for all constraints are left on the stack.
 | 
						|
**
 | 
						|
** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
 | 
						|
** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
 | 
						|
** The index has as many as three equality constraints, but in this
 | 
						|
** example, the third "c" value is an inequality.  So only two 
 | 
						|
** constraints are coded.  This routine will generate code to evaluate
 | 
						|
** a==5 and b IN (1,2,3).  The current values for a and b will be left
 | 
						|
** on the stack - a is the deepest and b the shallowest.
 | 
						|
**
 | 
						|
** In the example above nEq==2.  But this subroutine works for any value
 | 
						|
** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
 | 
						|
** The only thing it does is allocate the pLevel->iMem memory cell.
 | 
						|
**
 | 
						|
** This routine always allocates at least one memory cell and puts
 | 
						|
** the address of that memory cell in pLevel->iMem.  The code that
 | 
						|
** calls this routine will use pLevel->iMem to store the termination
 | 
						|
** key value of the loop.  If one or more IN operators appear, then
 | 
						|
** this routine allocates an additional nEq memory cells for internal
 | 
						|
** use.
 | 
						|
*/
 | 
						|
static void codeAllEqualityTerms(
 | 
						|
  Parse *pParse,        /* Parsing context */
 | 
						|
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
 | 
						|
  WhereClause *pWC,     /* The WHERE clause */
 | 
						|
  Bitmask notReady,     /* Which parts of FROM have not yet been coded */
 | 
						|
  int brk               /* Jump here to end the loop */
 | 
						|
){
 | 
						|
  int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
 | 
						|
  int termsInMem = 0;           /* If true, store value in mem[] cells */
 | 
						|
  Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
 | 
						|
  Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
 | 
						|
  int iCur = pLevel->iTabCur;   /* The cursor of the table */
 | 
						|
  WhereTerm *pTerm;             /* A single constraint term */
 | 
						|
  int j;                        /* Loop counter */
 | 
						|
 | 
						|
  /* Figure out how many memory cells we will need then allocate them.
 | 
						|
  ** We always need at least one used to store the loop terminator
 | 
						|
  ** value.  If there are IN operators we'll need one for each == or
 | 
						|
  ** IN constraint.
 | 
						|
  */
 | 
						|
  pLevel->iMem = pParse->nMem++;
 | 
						|
  if( pLevel->flags & WHERE_COLUMN_IN ){
 | 
						|
    pParse->nMem += pLevel->nEq;
 | 
						|
    termsInMem = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Evaluate the equality constraints
 | 
						|
  */
 | 
						|
  for(j=0; j<pIdx->nColumn; j++){
 | 
						|
    int k = pIdx->aiColumn[j];
 | 
						|
    pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN, pIdx);
 | 
						|
    if( pTerm==0 ) break;
 | 
						|
    assert( (pTerm->flags & TERM_CODED)==0 );
 | 
						|
    codeEqualityTerm(pParse, pTerm, brk, pLevel);
 | 
						|
    if( termsInMem ){
 | 
						|
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert( j==nEq );
 | 
						|
 | 
						|
  /* Make sure all the constraint values are on the top of the stack
 | 
						|
  */
 | 
						|
  if( termsInMem ){
 | 
						|
    for(j=0; j<nEq; j++){
 | 
						|
      sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(SQLITE_TEST)
 | 
						|
/*
 | 
						|
** The following variable holds a text description of query plan generated
 | 
						|
** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
 | 
						|
** overwrites the previous.  This information is used for testing and
 | 
						|
** analysis only.
 | 
						|
*/
 | 
						|
char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
 | 
						|
static int nQPlan = 0;              /* Next free slow in _query_plan[] */
 | 
						|
 | 
						|
#endif /* SQLITE_TEST */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Generate the beginning of the loop used for WHERE clause processing.
 | 
						|
** The return value is a pointer to an opaque structure that contains
 | 
						|
** information needed to terminate the loop.  Later, the calling routine
 | 
						|
** should invoke sqlite3WhereEnd() with the return value of this function
 | 
						|
** in order to complete the WHERE clause processing.
 | 
						|
**
 | 
						|
** If an error occurs, this routine returns NULL.
 | 
						|
**
 | 
						|
** The basic idea is to do a nested loop, one loop for each table in
 | 
						|
** the FROM clause of a select.  (INSERT and UPDATE statements are the
 | 
						|
** same as a SELECT with only a single table in the FROM clause.)  For
 | 
						|
** example, if the SQL is this:
 | 
						|
**
 | 
						|
**       SELECT * FROM t1, t2, t3 WHERE ...;
 | 
						|
**
 | 
						|
** Then the code generated is conceptually like the following:
 | 
						|
**
 | 
						|
**      foreach row1 in t1 do       \    Code generated
 | 
						|
**        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
 | 
						|
**          foreach row3 in t3 do   /
 | 
						|
**            ...
 | 
						|
**          end                     \    Code generated
 | 
						|
**        end                        |-- by sqlite3WhereEnd()
 | 
						|
**      end                         /
 | 
						|
**
 | 
						|
** Note that the loops might not be nested in the order in which they
 | 
						|
** appear in the FROM clause if a different order is better able to make
 | 
						|
** use of indices.  Note also that when the IN operator appears in
 | 
						|
** the WHERE clause, it might result in additional nested loops for
 | 
						|
** scanning through all values on the right-hand side of the IN.
 | 
						|
**
 | 
						|
** There are Btree cursors associated with each table.  t1 uses cursor
 | 
						|
** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
 | 
						|
** And so forth.  This routine generates code to open those VDBE cursors
 | 
						|
** and sqlite3WhereEnd() generates the code to close them.
 | 
						|
**
 | 
						|
** The code that sqlite3WhereBegin() generates leaves the cursors named
 | 
						|
** in pTabList pointing at their appropriate entries.  The [...] code
 | 
						|
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
 | 
						|
** data from the various tables of the loop.
 | 
						|
**
 | 
						|
** If the WHERE clause is empty, the foreach loops must each scan their
 | 
						|
** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
 | 
						|
** the tables have indices and there are terms in the WHERE clause that
 | 
						|
** refer to those indices, a complete table scan can be avoided and the
 | 
						|
** code will run much faster.  Most of the work of this routine is checking
 | 
						|
** to see if there are indices that can be used to speed up the loop.
 | 
						|
**
 | 
						|
** Terms of the WHERE clause are also used to limit which rows actually
 | 
						|
** make it to the "..." in the middle of the loop.  After each "foreach",
 | 
						|
** terms of the WHERE clause that use only terms in that loop and outer
 | 
						|
** loops are evaluated and if false a jump is made around all subsequent
 | 
						|
** inner loops (or around the "..." if the test occurs within the inner-
 | 
						|
** most loop)
 | 
						|
**
 | 
						|
** OUTER JOINS
 | 
						|
**
 | 
						|
** An outer join of tables t1 and t2 is conceptally coded as follows:
 | 
						|
**
 | 
						|
**    foreach row1 in t1 do
 | 
						|
**      flag = 0
 | 
						|
**      foreach row2 in t2 do
 | 
						|
**        start:
 | 
						|
**          ...
 | 
						|
**          flag = 1
 | 
						|
**      end
 | 
						|
**      if flag==0 then
 | 
						|
**        move the row2 cursor to a null row
 | 
						|
**        goto start
 | 
						|
**      fi
 | 
						|
**    end
 | 
						|
**
 | 
						|
** ORDER BY CLAUSE PROCESSING
 | 
						|
**
 | 
						|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
 | 
						|
** if there is one.  If there is no ORDER BY clause or if this routine
 | 
						|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
 | 
						|
**
 | 
						|
** If an index can be used so that the natural output order of the table
 | 
						|
** scan is correct for the ORDER BY clause, then that index is used and
 | 
						|
** *ppOrderBy is set to NULL.  This is an optimization that prevents an
 | 
						|
** unnecessary sort of the result set if an index appropriate for the
 | 
						|
** ORDER BY clause already exists.
 | 
						|
**
 | 
						|
** If the where clause loops cannot be arranged to provide the correct
 | 
						|
** output order, then the *ppOrderBy is unchanged.
 | 
						|
*/
 | 
						|
WhereInfo *sqlite3WhereBegin(
 | 
						|
  Parse *pParse,        /* The parser context */
 | 
						|
  SrcList *pTabList,    /* A list of all tables to be scanned */
 | 
						|
  Expr *pWhere,         /* The WHERE clause */
 | 
						|
  ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
 | 
						|
){
 | 
						|
  int i;                     /* Loop counter */
 | 
						|
  WhereInfo *pWInfo;         /* Will become the return value of this function */
 | 
						|
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
 | 
						|
  int brk, cont = 0;         /* Addresses used during code generation */
 | 
						|
  Bitmask notReady;          /* Cursors that are not yet positioned */
 | 
						|
  WhereTerm *pTerm;          /* A single term in the WHERE clause */
 | 
						|
  ExprMaskSet maskSet;       /* The expression mask set */
 | 
						|
  WhereClause wc;            /* The WHERE clause is divided into these terms */
 | 
						|
  struct SrcList_item *pTabItem;  /* A single entry from pTabList */
 | 
						|
  WhereLevel *pLevel;             /* A single level in the pWInfo list */
 | 
						|
  int iFrom;                      /* First unused FROM clause element */
 | 
						|
  int andFlags;              /* AND-ed combination of all wc.a[].flags */
 | 
						|
 | 
						|
  /* The number of tables in the FROM clause is limited by the number of
 | 
						|
  ** bits in a Bitmask 
 | 
						|
  */
 | 
						|
  if( pTabList->nSrc>BMS ){
 | 
						|
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Split the WHERE clause into separate subexpressions where each
 | 
						|
  ** subexpression is separated by an AND operator.
 | 
						|
  */
 | 
						|
  initMaskSet(&maskSet);
 | 
						|
  whereClauseInit(&wc, pParse);
 | 
						|
  whereSplit(&wc, pWhere, TK_AND);
 | 
						|
    
 | 
						|
  /* Allocate and initialize the WhereInfo structure that will become the
 | 
						|
  ** return value.
 | 
						|
  */
 | 
						|
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
 | 
						|
  if( sqlite3MallocFailed() ){
 | 
						|
    goto whereBeginNoMem;
 | 
						|
  }
 | 
						|
  pWInfo->pParse = pParse;
 | 
						|
  pWInfo->pTabList = pTabList;
 | 
						|
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
 | 
						|
 | 
						|
  /* Special case: a WHERE clause that is constant.  Evaluate the
 | 
						|
  ** expression and either jump over all of the code or fall thru.
 | 
						|
  */
 | 
						|
  if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
 | 
						|
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
 | 
						|
    pWhere = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
 | 
						|
  ** add new virtual terms onto the end of the WHERE clause.  We do not
 | 
						|
  ** want to analyze these virtual terms, so start analyzing at the end
 | 
						|
  ** and work forward so that the added virtual terms are never processed.
 | 
						|
  */
 | 
						|
  for(i=0; i<pTabList->nSrc; i++){
 | 
						|
    createMask(&maskSet, pTabList->a[i].iCursor);
 | 
						|
  }
 | 
						|
  exprAnalyzeAll(pTabList, &maskSet, &wc);
 | 
						|
  if( sqlite3MallocFailed() ){
 | 
						|
    goto whereBeginNoMem;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Chose the best index to use for each table in the FROM clause.
 | 
						|
  **
 | 
						|
  ** This loop fills in the following fields:
 | 
						|
  **
 | 
						|
  **   pWInfo->a[].pIdx      The index to use for this level of the loop.
 | 
						|
  **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
 | 
						|
  **   pWInfo->a[].nEq       The number of == and IN constraints
 | 
						|
  **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
 | 
						|
  **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
 | 
						|
  **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
 | 
						|
  **
 | 
						|
  ** This loop also figures out the nesting order of tables in the FROM
 | 
						|
  ** clause.
 | 
						|
  */
 | 
						|
  notReady = ~(Bitmask)0;
 | 
						|
  pTabItem = pTabList->a;
 | 
						|
  pLevel = pWInfo->a;
 | 
						|
  andFlags = ~0;
 | 
						|
  TRACE(("*** Optimizer Start ***\n"));
 | 
						|
  for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
						|
    Index *pIdx;                /* Index for FROM table at pTabItem */
 | 
						|
    int flags;                  /* Flags asssociated with pIdx */
 | 
						|
    int nEq;                    /* Number of == or IN constraints */
 | 
						|
    double cost;                /* The cost for pIdx */
 | 
						|
    int j;                      /* For looping over FROM tables */
 | 
						|
    Index *pBest = 0;           /* The best index seen so far */
 | 
						|
    int bestFlags = 0;          /* Flags associated with pBest */
 | 
						|
    int bestNEq = 0;            /* nEq associated with pBest */
 | 
						|
    double lowestCost;          /* Cost of the pBest */
 | 
						|
    int bestJ = 0;              /* The value of j */
 | 
						|
    Bitmask m;                  /* Bitmask value for j or bestJ */
 | 
						|
    int once = 0;               /* True when first table is seen */
 | 
						|
 | 
						|
    lowestCost = SQLITE_BIG_DBL;
 | 
						|
    for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
 | 
						|
      if( once && 
 | 
						|
          ((pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0
 | 
						|
           || (j>0 && (pTabItem[-1].jointype & (JT_LEFT|JT_CROSS))!=0))
 | 
						|
      ){
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      m = getMask(&maskSet, pTabItem->iCursor);
 | 
						|
      if( (m & notReady)==0 ){
 | 
						|
        if( j==iFrom ) iFrom++;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      cost = bestIndex(pParse, &wc, pTabItem, notReady,
 | 
						|
                       (i==0 && ppOrderBy) ? *ppOrderBy : 0,
 | 
						|
                       &pIdx, &flags, &nEq);
 | 
						|
      if( cost<lowestCost ){
 | 
						|
        once = 1;
 | 
						|
        lowestCost = cost;
 | 
						|
        pBest = pIdx;
 | 
						|
        bestFlags = flags;
 | 
						|
        bestNEq = nEq;
 | 
						|
        bestJ = j;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
 | 
						|
           pLevel-pWInfo->a));
 | 
						|
    if( (bestFlags & WHERE_ORDERBY)!=0 ){
 | 
						|
      *ppOrderBy = 0;
 | 
						|
    }
 | 
						|
    andFlags &= bestFlags;
 | 
						|
    pLevel->flags = bestFlags;
 | 
						|
    pLevel->pIdx = pBest;
 | 
						|
    pLevel->nEq = bestNEq;
 | 
						|
    pLevel->aInLoop = 0;
 | 
						|
    pLevel->nIn = 0;
 | 
						|
    if( pBest ){
 | 
						|
      pLevel->iIdxCur = pParse->nTab++;
 | 
						|
    }else{
 | 
						|
      pLevel->iIdxCur = -1;
 | 
						|
    }
 | 
						|
    notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
 | 
						|
    pLevel->iFrom = bestJ;
 | 
						|
  }
 | 
						|
  TRACE(("*** Optimizer Finished ***\n"));
 | 
						|
 | 
						|
  /* If the total query only selects a single row, then the ORDER BY
 | 
						|
  ** clause is irrelevant.
 | 
						|
  */
 | 
						|
  if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
 | 
						|
    *ppOrderBy = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Open all tables in the pTabList and any indices selected for
 | 
						|
  ** searching those tables.
 | 
						|
  */
 | 
						|
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
 | 
						|
  pLevel = pWInfo->a;
 | 
						|
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
						|
    Table *pTab;     /* Table to open */
 | 
						|
    Index *pIx;      /* Index used to access pTab (if any) */
 | 
						|
    int iDb;         /* Index of database containing table/index */
 | 
						|
    int iIdxCur = pLevel->iIdxCur;
 | 
						|
 | 
						|
#ifndef SQLITE_OMIT_EXPLAIN
 | 
						|
    if( pParse->explain==2 ){
 | 
						|
      char *zMsg;
 | 
						|
      struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
 | 
						|
      zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
 | 
						|
      if( pItem->zAlias ){
 | 
						|
        zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
 | 
						|
      }
 | 
						|
      if( (pIx = pLevel->pIdx)!=0 ){
 | 
						|
        zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
 | 
						|
      }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | 
						|
        zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
 | 
						|
      }
 | 
						|
      sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
 | 
						|
    }
 | 
						|
#endif /* SQLITE_OMIT_EXPLAIN */
 | 
						|
    pTabItem = &pTabList->a[pLevel->iFrom];
 | 
						|
    pTab = pTabItem->pTab;
 | 
						|
    iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | 
						|
    if( pTab->isTransient || pTab->pSelect ) continue;
 | 
						|
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | 
						|
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
 | 
						|
      if( pTab->nCol<(sizeof(Bitmask)*8) ){
 | 
						|
        Bitmask b = pTabItem->colUsed;
 | 
						|
        int n = 0;
 | 
						|
        for(; b; b=b>>1, n++){}
 | 
						|
        sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
 | 
						|
        assert( n<=pTab->nCol );
 | 
						|
      }
 | 
						|
    }else{
 | 
						|
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | 
						|
    }
 | 
						|
    pLevel->iTabCur = pTabItem->iCursor;
 | 
						|
    if( (pIx = pLevel->pIdx)!=0 ){
 | 
						|
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
 | 
						|
      assert( pIx->pSchema==pTab->pSchema );
 | 
						|
      sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
						|
      VdbeComment((v, "# %s", pIx->zName));
 | 
						|
      sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
 | 
						|
                     (char*)pKey, P3_KEYINFO_HANDOFF);
 | 
						|
    }
 | 
						|
    if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){
 | 
						|
      sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
 | 
						|
    }
 | 
						|
    sqlite3CodeVerifySchema(pParse, iDb);
 | 
						|
  }
 | 
						|
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
 | 
						|
 | 
						|
  /* Generate the code to do the search.  Each iteration of the for
 | 
						|
  ** loop below generates code for a single nested loop of the VM
 | 
						|
  ** program.
 | 
						|
  */
 | 
						|
  notReady = ~(Bitmask)0;
 | 
						|
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
						|
    int j;
 | 
						|
    int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
 | 
						|
    Index *pIdx;       /* The index we will be using */
 | 
						|
    int iIdxCur;       /* The VDBE cursor for the index */
 | 
						|
    int omitTable;     /* True if we use the index only */
 | 
						|
    int bRev;          /* True if we need to scan in reverse order */
 | 
						|
 | 
						|
    pTabItem = &pTabList->a[pLevel->iFrom];
 | 
						|
    iCur = pTabItem->iCursor;
 | 
						|
    pIdx = pLevel->pIdx;
 | 
						|
    iIdxCur = pLevel->iIdxCur;
 | 
						|
    bRev = (pLevel->flags & WHERE_REVERSE)!=0;
 | 
						|
    omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
 | 
						|
 | 
						|
    /* Create labels for the "break" and "continue" instructions
 | 
						|
    ** for the current loop.  Jump to brk to break out of a loop.
 | 
						|
    ** Jump to cont to go immediately to the next iteration of the
 | 
						|
    ** loop.
 | 
						|
    */
 | 
						|
    brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
 | 
						|
    cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
 | 
						|
 | 
						|
    /* If this is the right table of a LEFT OUTER JOIN, allocate and
 | 
						|
    ** initialize a memory cell that records if this table matches any
 | 
						|
    ** row of the left table of the join.
 | 
						|
    */
 | 
						|
    if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){
 | 
						|
      if( !pParse->nMem ) pParse->nMem++;
 | 
						|
      pLevel->iLeftJoin = pParse->nMem++;
 | 
						|
      sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
 | 
						|
      VdbeComment((v, "# init LEFT JOIN no-match flag"));
 | 
						|
    }
 | 
						|
 | 
						|
    if( pLevel->flags & WHERE_ROWID_EQ ){
 | 
						|
      /* Case 1:  We can directly reference a single row using an
 | 
						|
      **          equality comparison against the ROWID field.  Or
 | 
						|
      **          we reference multiple rows using a "rowid IN (...)"
 | 
						|
      **          construct.
 | 
						|
      */
 | 
						|
      pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | 
						|
      assert( pTerm!=0 );
 | 
						|
      assert( pTerm->pExpr!=0 );
 | 
						|
      assert( pTerm->leftCursor==iCur );
 | 
						|
      assert( omitTable==0 );
 | 
						|
      codeEqualityTerm(pParse, pTerm, brk, pLevel);
 | 
						|
      sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
 | 
						|
      sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
 | 
						|
      VdbeComment((v, "pk"));
 | 
						|
      pLevel->op = OP_Noop;
 | 
						|
    }else if( pLevel->flags & WHERE_ROWID_RANGE ){
 | 
						|
      /* Case 2:  We have an inequality comparison against the ROWID field.
 | 
						|
      */
 | 
						|
      int testOp = OP_Noop;
 | 
						|
      int start;
 | 
						|
      WhereTerm *pStart, *pEnd;
 | 
						|
 | 
						|
      assert( omitTable==0 );
 | 
						|
      pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
 | 
						|
      pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
 | 
						|
      if( bRev ){
 | 
						|
        pTerm = pStart;
 | 
						|
        pStart = pEnd;
 | 
						|
        pEnd = pTerm;
 | 
						|
      }
 | 
						|
      if( pStart ){
 | 
						|
        Expr *pX;
 | 
						|
        pX = pStart->pExpr;
 | 
						|
        assert( pX!=0 );
 | 
						|
        assert( pStart->leftCursor==iCur );
 | 
						|
        sqlite3ExprCode(pParse, pX->pRight);
 | 
						|
        sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
 | 
						|
        sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
 | 
						|
        VdbeComment((v, "pk"));
 | 
						|
        disableTerm(pLevel, pStart);
 | 
						|
      }else{
 | 
						|
        sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
 | 
						|
      }
 | 
						|
      if( pEnd ){
 | 
						|
        Expr *pX;
 | 
						|
        pX = pEnd->pExpr;
 | 
						|
        assert( pX!=0 );
 | 
						|
        assert( pEnd->leftCursor==iCur );
 | 
						|
        sqlite3ExprCode(pParse, pX->pRight);
 | 
						|
        pLevel->iMem = pParse->nMem++;
 | 
						|
        sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
						|
        if( pX->op==TK_LT || pX->op==TK_GT ){
 | 
						|
          testOp = bRev ? OP_Le : OP_Ge;
 | 
						|
        }else{
 | 
						|
          testOp = bRev ? OP_Lt : OP_Gt;
 | 
						|
        }
 | 
						|
        disableTerm(pLevel, pEnd);
 | 
						|
      }
 | 
						|
      start = sqlite3VdbeCurrentAddr(v);
 | 
						|
      pLevel->op = bRev ? OP_Prev : OP_Next;
 | 
						|
      pLevel->p1 = iCur;
 | 
						|
      pLevel->p2 = start;
 | 
						|
      if( testOp!=OP_Noop ){
 | 
						|
        sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
 | 
						|
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk);
 | 
						|
      }
 | 
						|
    }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
 | 
						|
      /* Case 3: The WHERE clause term that refers to the right-most
 | 
						|
      **         column of the index is an inequality.  For example, if
 | 
						|
      **         the index is on (x,y,z) and the WHERE clause is of the
 | 
						|
      **         form "x=5 AND y<10" then this case is used.  Only the
 | 
						|
      **         right-most column can be an inequality - the rest must
 | 
						|
      **         use the "==" and "IN" operators.
 | 
						|
      **
 | 
						|
      **         This case is also used when there are no WHERE clause
 | 
						|
      **         constraints but an index is selected anyway, in order
 | 
						|
      **         to force the output order to conform to an ORDER BY.
 | 
						|
      */
 | 
						|
      int start;
 | 
						|
      int nEq = pLevel->nEq;
 | 
						|
      int topEq=0;        /* True if top limit uses ==. False is strictly < */
 | 
						|
      int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
 | 
						|
      int topOp, btmOp;   /* Operators for the top and bottom search bounds */
 | 
						|
      int testOp;
 | 
						|
      int nNotNull;       /* Number of rows of index that must be non-NULL */
 | 
						|
      int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
 | 
						|
      int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
 | 
						|
 | 
						|
      /* Generate code to evaluate all constraint terms using == or IN
 | 
						|
      ** and level the values of those terms on the stack.
 | 
						|
      */
 | 
						|
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
 | 
						|
 | 
						|
      /* Duplicate the equality term values because they will all be
 | 
						|
      ** used twice: once to make the termination key and once to make the
 | 
						|
      ** start key.
 | 
						|
      */
 | 
						|
      for(j=0; j<nEq; j++){
 | 
						|
        sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Figure out what comparison operators to use for top and bottom 
 | 
						|
      ** search bounds. For an ascending index, the bottom bound is a > or >=
 | 
						|
      ** operator and the top bound is a < or <= operator.  For a descending
 | 
						|
      ** index the operators are reversed.
 | 
						|
      */
 | 
						|
      nNotNull = nEq + topLimit;
 | 
						|
      if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
 | 
						|
        topOp = WO_LT|WO_LE;
 | 
						|
        btmOp = WO_GT|WO_GE;
 | 
						|
      }else{
 | 
						|
        topOp = WO_GT|WO_GE;
 | 
						|
        btmOp = WO_LT|WO_LE;
 | 
						|
        SWAP(int, topLimit, btmLimit);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Generate the termination key.  This is the key value that
 | 
						|
      ** will end the search.  There is no termination key if there
 | 
						|
      ** are no equality terms and no "X<..." term.
 | 
						|
      **
 | 
						|
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
 | 
						|
      ** key computed here really ends up being the start key.
 | 
						|
      */
 | 
						|
      if( topLimit ){
 | 
						|
        Expr *pX;
 | 
						|
        int k = pIdx->aiColumn[j];
 | 
						|
        pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
 | 
						|
        assert( pTerm!=0 );
 | 
						|
        pX = pTerm->pExpr;
 | 
						|
        assert( (pTerm->flags & TERM_CODED)==0 );
 | 
						|
        sqlite3ExprCode(pParse, pX->pRight);
 | 
						|
        topEq = pTerm->eOperator & (WO_LE|WO_GE);
 | 
						|
        disableTerm(pLevel, pTerm);
 | 
						|
        testOp = OP_IdxGE;
 | 
						|
      }else{
 | 
						|
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
 | 
						|
        topEq = 1;
 | 
						|
      }
 | 
						|
      if( testOp!=OP_Noop ){
 | 
						|
        int nCol = nEq + topLimit;
 | 
						|
        pLevel->iMem = pParse->nMem++;
 | 
						|
        buildIndexProbe(v, nCol, nEq, brk, pIdx);
 | 
						|
        if( bRev ){
 | 
						|
          int op = topEq ? OP_MoveLe : OP_MoveLt;
 | 
						|
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
 | 
						|
        }else{
 | 
						|
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
						|
        }
 | 
						|
      }else if( bRev ){
 | 
						|
        sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Generate the start key.  This is the key that defines the lower
 | 
						|
      ** bound on the search.  There is no start key if there are no
 | 
						|
      ** equality terms and if there is no "X>..." term.  In
 | 
						|
      ** that case, generate a "Rewind" instruction in place of the
 | 
						|
      ** start key search.
 | 
						|
      **
 | 
						|
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
 | 
						|
      ** "start" key really ends up being used as the termination key.
 | 
						|
      */
 | 
						|
      if( btmLimit ){
 | 
						|
        Expr *pX;
 | 
						|
        int k = pIdx->aiColumn[j];
 | 
						|
        pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
 | 
						|
        assert( pTerm!=0 );
 | 
						|
        pX = pTerm->pExpr;
 | 
						|
        assert( (pTerm->flags & TERM_CODED)==0 );
 | 
						|
        sqlite3ExprCode(pParse, pX->pRight);
 | 
						|
        btmEq = pTerm->eOperator & (WO_LE|WO_GE);
 | 
						|
        disableTerm(pLevel, pTerm);
 | 
						|
      }else{
 | 
						|
        btmEq = 1;
 | 
						|
      }
 | 
						|
      if( nEq>0 || btmLimit ){
 | 
						|
        int nCol = nEq + btmLimit;
 | 
						|
        buildIndexProbe(v, nCol, 0, brk, pIdx);
 | 
						|
        if( bRev ){
 | 
						|
          pLevel->iMem = pParse->nMem++;
 | 
						|
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
						|
          testOp = OP_IdxLT;
 | 
						|
        }else{
 | 
						|
          int op = btmEq ? OP_MoveGe : OP_MoveGt;
 | 
						|
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
 | 
						|
        }
 | 
						|
      }else if( bRev ){
 | 
						|
        testOp = OP_Noop;
 | 
						|
      }else{
 | 
						|
        sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Generate the the top of the loop.  If there is a termination
 | 
						|
      ** key we have to test for that key and abort at the top of the
 | 
						|
      ** loop.
 | 
						|
      */
 | 
						|
      start = sqlite3VdbeCurrentAddr(v);
 | 
						|
      if( testOp!=OP_Noop ){
 | 
						|
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
 | 
						|
        if( (topEq && !bRev) || (!btmEq && bRev) ){
 | 
						|
          sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
 | 
						|
      sqlite3VdbeAddOp(v, OP_IdxIsNull, nNotNull, cont);
 | 
						|
      if( !omitTable ){
 | 
						|
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
 | 
						|
        sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Record the instruction used to terminate the loop.
 | 
						|
      */
 | 
						|
      pLevel->op = bRev ? OP_Prev : OP_Next;
 | 
						|
      pLevel->p1 = iIdxCur;
 | 
						|
      pLevel->p2 = start;
 | 
						|
    }else if( pLevel->flags & WHERE_COLUMN_EQ ){
 | 
						|
      /* Case 4:  There is an index and all terms of the WHERE clause that
 | 
						|
      **          refer to the index using the "==" or "IN" operators.
 | 
						|
      */
 | 
						|
      int start;
 | 
						|
      int nEq = pLevel->nEq;
 | 
						|
 | 
						|
      /* Generate code to evaluate all constraint terms using == or IN
 | 
						|
      ** and leave the values of those terms on the stack.
 | 
						|
      */
 | 
						|
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
 | 
						|
 | 
						|
      /* Generate a single key that will be used to both start and terminate
 | 
						|
      ** the search
 | 
						|
      */
 | 
						|
      buildIndexProbe(v, nEq, 0, brk, pIdx);
 | 
						|
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
 | 
						|
 | 
						|
      /* Generate code (1) to move to the first matching element of the table.
 | 
						|
      ** Then generate code (2) that jumps to "brk" after the cursor is past
 | 
						|
      ** the last matching element of the table.  The code (1) is executed
 | 
						|
      ** once to initialize the search, the code (2) is executed before each
 | 
						|
      ** iteration of the scan to see if the scan has finished. */
 | 
						|
      if( bRev ){
 | 
						|
        /* Scan in reverse order */
 | 
						|
        sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
 | 
						|
        start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
 | 
						|
        pLevel->op = OP_Prev;
 | 
						|
      }else{
 | 
						|
        /* Scan in the forward order */
 | 
						|
        sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
 | 
						|
        start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
						|
        sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
 | 
						|
        pLevel->op = OP_Next;
 | 
						|
      }
 | 
						|
      sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
 | 
						|
      sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq, cont);
 | 
						|
      if( !omitTable ){
 | 
						|
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
 | 
						|
        sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
 | 
						|
      }
 | 
						|
      pLevel->p1 = iIdxCur;
 | 
						|
      pLevel->p2 = start;
 | 
						|
    }else{
 | 
						|
      /* Case 5:  There is no usable index.  We must do a complete
 | 
						|
      **          scan of the entire table.
 | 
						|
      */
 | 
						|
      assert( omitTable==0 );
 | 
						|
      assert( bRev==0 );
 | 
						|
      pLevel->op = OP_Next;
 | 
						|
      pLevel->p1 = iCur;
 | 
						|
      pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
 | 
						|
    }
 | 
						|
    notReady &= ~getMask(&maskSet, iCur);
 | 
						|
 | 
						|
    /* Insert code to test every subexpression that can be completely
 | 
						|
    ** computed using the current set of tables.
 | 
						|
    */
 | 
						|
    for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
 | 
						|
      Expr *pE;
 | 
						|
      if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | 
						|
      if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | 
						|
      pE = pTerm->pExpr;
 | 
						|
      assert( pE!=0 );
 | 
						|
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      sqlite3ExprIfFalse(pParse, pE, cont, 1);
 | 
						|
      pTerm->flags |= TERM_CODED;
 | 
						|
    }
 | 
						|
 | 
						|
    /* For a LEFT OUTER JOIN, generate code that will record the fact that
 | 
						|
    ** at least one row of the right table has matched the left table.  
 | 
						|
    */
 | 
						|
    if( pLevel->iLeftJoin ){
 | 
						|
      pLevel->top = sqlite3VdbeCurrentAddr(v);
 | 
						|
      sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
 | 
						|
      VdbeComment((v, "# record LEFT JOIN hit"));
 | 
						|
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
 | 
						|
        if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | 
						|
        if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | 
						|
        assert( pTerm->pExpr );
 | 
						|
        sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
 | 
						|
        pTerm->flags |= TERM_CODED;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef SQLITE_TEST  /* For testing and debugging use only */
 | 
						|
  /* Record in the query plan information about the current table
 | 
						|
  ** and the index used to access it (if any).  If the table itself
 | 
						|
  ** is not used, its name is just '{}'.  If no index is used
 | 
						|
  ** the index is listed as "{}".  If the primary key is used the
 | 
						|
  ** index name is '*'.
 | 
						|
  */
 | 
						|
  for(i=0; i<pTabList->nSrc; i++){
 | 
						|
    char *z;
 | 
						|
    int n;
 | 
						|
    pLevel = &pWInfo->a[i];
 | 
						|
    pTabItem = &pTabList->a[pLevel->iFrom];
 | 
						|
    z = pTabItem->zAlias;
 | 
						|
    if( z==0 ) z = pTabItem->pTab->zName;
 | 
						|
    n = strlen(z);
 | 
						|
    if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
 | 
						|
      if( pLevel->flags & WHERE_IDX_ONLY ){
 | 
						|
        strcpy(&sqlite3_query_plan[nQPlan], "{}");
 | 
						|
        nQPlan += 2;
 | 
						|
      }else{
 | 
						|
        strcpy(&sqlite3_query_plan[nQPlan], z);
 | 
						|
        nQPlan += n;
 | 
						|
      }
 | 
						|
      sqlite3_query_plan[nQPlan++] = ' ';
 | 
						|
    }
 | 
						|
    if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | 
						|
      strcpy(&sqlite3_query_plan[nQPlan], "* ");
 | 
						|
      nQPlan += 2;
 | 
						|
    }else if( pLevel->pIdx==0 ){
 | 
						|
      strcpy(&sqlite3_query_plan[nQPlan], "{} ");
 | 
						|
      nQPlan += 3;
 | 
						|
    }else{
 | 
						|
      n = strlen(pLevel->pIdx->zName);
 | 
						|
      if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
 | 
						|
        strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName);
 | 
						|
        nQPlan += n;
 | 
						|
        sqlite3_query_plan[nQPlan++] = ' ';
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
 | 
						|
    sqlite3_query_plan[--nQPlan] = 0;
 | 
						|
  }
 | 
						|
  sqlite3_query_plan[nQPlan] = 0;
 | 
						|
  nQPlan = 0;
 | 
						|
#endif /* SQLITE_TEST // Testing and debugging use only */
 | 
						|
 | 
						|
  /* Record the continuation address in the WhereInfo structure.  Then
 | 
						|
  ** clean up and return.
 | 
						|
  */
 | 
						|
  pWInfo->iContinue = cont;
 | 
						|
  whereClauseClear(&wc);
 | 
						|
  return pWInfo;
 | 
						|
 | 
						|
  /* Jump here if malloc fails */
 | 
						|
whereBeginNoMem:
 | 
						|
  whereClauseClear(&wc);
 | 
						|
  sqliteFree(pWInfo);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** Generate the end of the WHERE loop.  See comments on 
 | 
						|
** sqlite3WhereBegin() for additional information.
 | 
						|
*/
 | 
						|
void sqlite3WhereEnd(WhereInfo *pWInfo){
 | 
						|
  Vdbe *v = pWInfo->pParse->pVdbe;
 | 
						|
  int i;
 | 
						|
  WhereLevel *pLevel;
 | 
						|
  SrcList *pTabList = pWInfo->pTabList;
 | 
						|
 | 
						|
  /* Generate loop termination code.
 | 
						|
  */
 | 
						|
  for(i=pTabList->nSrc-1; i>=0; i--){
 | 
						|
    pLevel = &pWInfo->a[i];
 | 
						|
    sqlite3VdbeResolveLabel(v, pLevel->cont);
 | 
						|
    if( pLevel->op!=OP_Noop ){
 | 
						|
      sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
 | 
						|
    }
 | 
						|
    sqlite3VdbeResolveLabel(v, pLevel->brk);
 | 
						|
    if( pLevel->nIn ){
 | 
						|
      int *a;
 | 
						|
      int j;
 | 
						|
      for(j=pLevel->nIn, a=&pLevel->aInLoop[j*3-3]; j>0; j--, a-=3){
 | 
						|
        sqlite3VdbeAddOp(v, a[0], a[1], a[2]);
 | 
						|
      }
 | 
						|
      sqliteFree(pLevel->aInLoop);
 | 
						|
    }
 | 
						|
    if( pLevel->iLeftJoin ){
 | 
						|
      int addr;
 | 
						|
      addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
 | 
						|
      sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
 | 
						|
      if( pLevel->iIdxCur>=0 ){
 | 
						|
        sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
 | 
						|
      }
 | 
						|
      sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
 | 
						|
      sqlite3VdbeJumpHere(v, addr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* The "break" point is here, just past the end of the outer loop.
 | 
						|
  ** Set it.
 | 
						|
  */
 | 
						|
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
 | 
						|
 | 
						|
  /* Close all of the cursors that were opened by sqlite3WhereBegin.
 | 
						|
  */
 | 
						|
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
						|
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
 | 
						|
    Table *pTab = pTabItem->pTab;
 | 
						|
    assert( pTab!=0 );
 | 
						|
    if( pTab->isTransient || pTab->pSelect ) continue;
 | 
						|
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | 
						|
      sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
 | 
						|
    }
 | 
						|
    if( pLevel->pIdx!=0 ){
 | 
						|
      sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make cursor substitutions for cases where we want to use
 | 
						|
    ** just the index and never reference the table.
 | 
						|
    ** 
 | 
						|
    ** Calls to the code generator in between sqlite3WhereBegin and
 | 
						|
    ** sqlite3WhereEnd will have created code that references the table
 | 
						|
    ** directly.  This loop scans all that code looking for opcodes
 | 
						|
    ** that reference the table and converts them into opcodes that
 | 
						|
    ** reference the index.
 | 
						|
    */
 | 
						|
    if( pLevel->flags & WHERE_IDX_ONLY ){
 | 
						|
      int k, j, last;
 | 
						|
      VdbeOp *pOp;
 | 
						|
      Index *pIdx = pLevel->pIdx;
 | 
						|
 | 
						|
      assert( pIdx!=0 );
 | 
						|
      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
 | 
						|
      last = sqlite3VdbeCurrentAddr(v);
 | 
						|
      for(k=pWInfo->iTop; k<last; k++, pOp++){
 | 
						|
        if( pOp->p1!=pLevel->iTabCur ) continue;
 | 
						|
        if( pOp->opcode==OP_Column ){
 | 
						|
          pOp->p1 = pLevel->iIdxCur;
 | 
						|
          for(j=0; j<pIdx->nColumn; j++){
 | 
						|
            if( pOp->p2==pIdx->aiColumn[j] ){
 | 
						|
              pOp->p2 = j;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }else if( pOp->opcode==OP_Rowid ){
 | 
						|
          pOp->p1 = pLevel->iIdxCur;
 | 
						|
          pOp->opcode = OP_IdxRowid;
 | 
						|
        }else if( pOp->opcode==OP_NullRow ){
 | 
						|
          pOp->opcode = OP_Noop;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Final cleanup
 | 
						|
  */
 | 
						|
  sqliteFree(pWInfo);
 | 
						|
  return;
 | 
						|
}
 |