
High Quality C Preprocessor Mcpp

Kiyoshi Matsui
kmatsui@t3.rim.or.jp

November 30th, 2008

Abstract

There has been a long history of confusion about
the specifications of C preprocessing. Although,
after C90, preprocessor specifications tend to con-
verge to the Standard, so called Standard-conforming
preprocessors still sometimes behave wrong. More-
over, the existing preprocessors have not a lit-
tle implementation-specific behaviors, and as a re-
sult preprocessing sometimes impairs portability, al-
though one of the purpose of preprocessing is to pro-
vide portability. Furthermore, debug of preprocess-
ing, which is difficult in compile phase, should be
supported by preprocessor, but the existing prepro-
cessors have little of that functionality. Under these
problems lies the fact that in most compiler systems
preprocessor has been an addition to compiler. This
situation has not much changed since pre-C90 until
now.

mcpp has been developed attempting to solve
these problems. mcpp is an open source software.
It is a portable C preprocessor and provides a vali-
dation suite to make thorough tests and evaluation
of C/C++ preprocessors. When this validation suite
is applied to various preprocessors, mcpp achieves
a prominent result. mcpp not only has the high-
est conformance but also provides a variety of on-
target diagnostic messages and #pragma directives
to output debugging information. mcpp thus allows
users to check almost all the preprocessing problems
of source code.

1 Introduction

There has been a long history of confusion about
the specifications of C preprocessors. Although, af-

ter C90 (C89),2–5 preprocessor specifications have
converged to the Standard, so called Standard-
conforming preprocessors still sometimes behave
wrong. It can be said that preprocessing is a rather
immature field compared to compiling.

Behind this, there lies a background that prepro-
cessing specifications before C90 were very ambigu-
ous. C90 gave the first overall definition of C pre-
processing, going back to the principles of prepro-
cessing. C90, however, has some compromising parts
with the historical negative inheritance, which have
not been cleared even by C99.6–8 Moreover, most of
the existing preprocessors seem to have grafted each
specifications of the Standards one by one without C
preprocessing principles being made clear, thus pro-
longing the problems. The subordinate situation of
preprocessor to compiler makes another background
of the problems.

Against these backgrounds, not a few C programs
have preprocessing level problems, such as unnec-
essarily implementation-dependent code lacking of
portability. One of the reasons for existence of the
preprocessing phase in C is to provide greater porta-
bility, however, in fact, preprocessing itself has often
impaired it.

In addition, preprocessing causes debugging diffi-
culties. Since preprocessing is a “pre”process of com-
piling, preprocessing directives and macros disappear
in compile phase. Although the preprocessors them-
selves should assist debug of preprocess phase, no pre-
processor does this.

I have been developing a C preprocessor for a long
time. My work had already been released as cpp
V.2.0 and V.2.2 in August 1998 and in November
1998 respectively. During the course of updating
the software to V.2.3, it was selected as one of the

1

“Exploratory Software Projects” for year 2002 and
for year 2003 by Information-technology Promotion
Agency (IPA), Japan.1 V.2.3 and V.2.4 were released
as the results of the project. After the project, coop-
eration of other programmers increased, and V.2.5,
V.2.6 and V.2.7 were released. My cpp is called
mcpp (Matsui CPP) to distinguish it from other
cpps.

mcpp is probably number one C preprocessor now
available in the world. I say this not merely from self-
praise, but because of its big feature that its behav-
iors have been completely verified using “Validation
Suite”, which I developed in parallel with mcpp.

Another feature is that it provides a lot of diagnos-
tic messages and #pragma directives for debugging
information that allows you to check almost all the
preprocessing problems in source programs and to in-
crease source portability.

Also it is a portable preprocessor easily imple-
mentable for any compiler system, and hence can
assure portability of preprocess phase independent
on the compilers proper. Its source is structured on
clearly defined preprocessing principles, and its spec-
ifications are clear.

This document is organized as follows:
Section 2: Provides an overview of mcpp.
Section 3: Introduces briefly the basic specifica-

tions of Standard C preprocessing.
Section 4: Introduces mcpp’s accompanying Val-

idation Suite and shows data to compare Standard
conformance level and qualities with other prepro-
cessors.

Section 5: Shows examples of bugs and problems
in compiler-system-resident preprocessors.

Section 6: Describes source checking by mcpp of
the real world programs.

Section 7: Discusses C preprocessing principles and
how to implement them.

Section 8: Describes the current version of mcpp
and future update plans.

2 mcpp Overview

mcpp has the following features:

1. Has the highest conformance to C/C++ Stan-
dards because mcpp aims at becoming a refer-
ence model of C and C++ preprocessors. mcpp

provides run-time options to enable C99 and
C++989, 10 behaviors, needless to say C90.

2. Provides a validation suite that allows you to test
and evaluate C or C++ preprocessors themselves
in great detail and comprehensively.

3. Provides a lot of diagnostic messages of more
than one hundred types to pinpoint a problem
in source code. They are divided into several
classes. Messages of which class are displayed is
controlled by run-time options.

4. Provides the #pragma directives to output vari-
ous debugging information. The directives allow
you to trace tokenization and macro expansion,
to output a macro definition list and etc. Also
mcpp has a mode to output macro informations
embedded in comments. This mode allows you
to know macro calls and their locations on source
file from preprocessed output.

5. mcpp’s multi-byte character processing can
handle a variety of Japanese EUC-JP, shift-JIS
and ISO-2022-JP, Chinese GB-2312, Taiwanese
Big-5 and Korean KSX-1001 encodings as well
as UTF-8. For the compiler proper which can-
not recognize shift-JIS, ISO-2022-JP or Big-5,
mcpp can complement it.

6. Processing speed is not so slow; it can be used
not only for debugging purpose but also for daily
use. It can work properly in a system with a
small amount of memory.

7. mcpp’s source is portable. It can be com-
piled with any C90 conforming compiler sys-
tems. mcpp is so designed that it can gen-
erate a preprocessor to be used replacing a
compiler-system-resident one (if possible) on
UNIX-like systems or Windows by modifying
some settings in header files on compilation of
mcpp. mcpp’s source also allows to generate
a compiler-independent preprocessor which be-
haves on its own independent of any compiler
systems. Moreover, you can also compile mcpp
as a subroutine to be called from some other
main program.

8. In addition to “Standard” mode, which conforms
to C90, C99 and C++98 Standards, mcpp has

2

various behavioral modes, including the mode
of K&R1st specifications, the Reiser model cpp
mode and what I call “post-Standard” mode
in which all the problems in C Standards are
cleared.

9. On UNIX-like systems, a configure script can
be used to automatically generate a mcpp ex-
ecutable. If GCC testsuite has been installed,
most of the testcases of validation suite can be
automatically executed by ‘make check’ com-
mand.

10. mcpp is an open source software. Under the
BSD-style license, all of the sources, documents
and the validation suite are provided open.

11. Sufficient documentation is provided both in
Japanese and in English. The English ver-
sions was translated by HighWell inc.(Tokyo)20

from the Japanese ones at “Exploratory Software
Projects” and have been revised by the author.
After the project, the updates have been done
by the author.

(a) INSTALL – Describes how to configure and
make mcpp.

(b) mcpp-summary.pdf – This summary docu-
ment.

(c) mcpp-manual.html: Users Manual – De-
scribes how to use mcpp, its specifications
and meanings of diagnostic messages, and
suggests how to write portable source code.
Also comments sources of some softwares
on preprocessing problems.

(d) mcpp-porting.html: Porting Manual – De-
scribes how to port mcpp to particular
compiler systems.

(e) cpp-test.html: Validation Suite Manual –
Also explain C Standards. It indicates con-
tradictions and deficiencies in Standards
themselves and proposes alternatives. It
also shows the results of applying Valida-
tion Suite to several preprocessors.

3 Basic Specifications of
Preprocess

Before entering into the subject, let me summarize
the basic specifications of Standard C/C++ prepro-
cessing.

3.1 Procedure of Preprocess

The procedure of preprocessing was not at all de-
scribed in K&R1st, hence had been the source of
many confusions. C90 made clear the procedure by
specifying the translation phases as follows:

1. Map source file characters to source character
set, if necessary. Replace trigraphs.

2. Delete <backslash><newline> sequences, splic-
ing physical source lines to form logical source
lines.

3. Decompose source file to preprocessing-tokens
and white space sequences. Replace each com-
ment by one space character. <newline>s are
retained.

4. Execute preprocessing directives, expand macro
invocations. Process header file named by #in-
clude directive from phase 1 through phase 4,
recursively.

5. Convert from source character set to execu-
tion character set, including escape sequences in
string literals and character constants.

6. Concatenate adjacent string literals.

7. Convert preprocessing-tokens into tokens and
compile.

8. Link.

After that, C99 added processing of _Pragma()
operator in phase 4, also added and modified a
few words. Nevertheless, the above outline was not
changed.

C++98 inserted ‘instantiation’ phase after phase 7,
and appended a so-called UCN specification, that is
to convert source file character not in the basic source
character set to universal character name (UCN) in

3

Table 1: Number of Test Items and Scores covered by Validation Suite V.1.5.5
Number of Perfect
Test Items Score

K&R 31 166
Standard C90 140 432
conformance C99 20 98

C++98 9 26
Quality diagnostics 47 76
issues others 18 164

total 265 962

phase 1, and convert it again to execution character
set in phase 5.

Of these translation phases, from phase 1 through
phase 4 are usually called preprocessing.

3.2 Diagnostics and Documentation

The definitions of diagnostics and document are vir-
tually all the same among C90, C99 and C++98 ex-
cept some difference of wording, and defined as fol-
lows:

Implementation shall issue diagnostic message, if
a translation unit contains a violation of any syntax
rule or constraint. It is implementation-defined how
a diagnostic is identified.

Implementation shall document its choice on any
implementation-defined behavior.

4 Results of Applying
Validation Suite to Various

Preprocessors

One of the problems involved in preprocessor develop-
ment is how to verify preprocessor’s behavior and its
quality. Though most compiler systems calls them-
selves as “Standard conforming”, their verification
data are not shown in many cases. Wrong behav-
ior or poor quality of compiler systems is, of course,
out of question. However, in fact, many problems
were detected in existing preprocessors when they
were tested with Validation Suite. Validation Suite
provides quite a lot of test items to measure various

aspects of a preprocessor objectively and comprehen-
sively as much as possible.

As shown in Table 1, Validation Suite V.1.5.5
contains as much as 265 test items, of which, 230
cover preprocessor behaviors and 35 documentation
and quality evaluation. Score of each test item is
weighted. The lowest score of each item is all 0.

“Standard conformance” includes evaluation of di-
agnostic messages and documentation, as well as of
behaviors. “K&R” means specifications common be-
tween K&R1st and C90. “Standard conformance” for
C99 and C++98 deals with new specifications that
do not exist in C90. “Standard conformance” covers
all the specifications of Standards.

“Quality: diagnostics” deals with diagnostic mes-
sages that are not required by the Standards. “Qual-
ity: others” deals with execution options, #pragmas,
multi-byte character handling, processing speed, etc.

There are some rooms for subjective evaluation in
the quality items and the allocation of points, and
there are problems in measuring the diverse items
with one yardstick. Nevertheless, I think that this
scale gives results fairly close to the actual usage im-
pressions.

Table 2 and figure 1 shows the summary of results
of applying Validation Suite V.1.5.5 to several com-
piler systems. The table and the figure shows com-

4

Table 2: Validation Results of Each Preprocessor
Preprocessor year/month conformance quality overall

K&R C90 C99 C++ total diag- others evalu-
98 nostic ation

DECUS cpp 1 1985/01 150 240 0 0 390 15 78 483
mcpp 2.0 2 1998/08 166 430 58 10 664 68 125 857
Borland C 5.5 3 2000/08 164 366 20 6 556 18 72 646
GCC 2.95.3 4 2001/03 166 404 56 6 632 24 113 769
GCC 3.2 5 2002/08 166 419 86 20 691 32 117 840
ucpp 1.3 6 2003/01 166 384 88 9 647 25 88 760
Visual C 2003 7 2003/04 156 394 41 13 604 21 83 708
LCC-Win32 2003-08 8 2003/08 158 376 18 6 558 19 84 661
Wave 1.0 9 2004/01 140 336 53 18 547 19 77 643
mcpp 2.4 10 2004/02 166 432 98 22 718 73 130 921
GCC 3.4.3 11 2004/11 166 415 87 20 688 38 120 846
Visual C 2005 12 2005/09 160 401 61 13 635 20 79 734
LCC-Win32 2006-03 13 2006/03 156 374 22 6 558 22 85 665
GCC 4.1.1 14 2006/05 166 417 87 20 690 38 118 846
Visual C 2008 15 2007/12 160 401 61 13 635 20 79 734
Wave 2.0 16 2008/08 165 390 70 16 641 30 78 749
mcpp 2.7.2 17 2008/11 166 432 98 22 718 76 136 930
perfect score 166 432 98 26 722 76 164 962

piler systems in a chronological order.

1DECUS cpp: Original version written by Martin Minow,11

which was slightly revised by the author and compiled with
Linux/GCC.

2mcpp 2.0: Open source software developed by the author.
Was rewritten based on DECUS cpp. Was ported to various
compiler systems, such as FreeBSD/GCC 2.7, DJGPP V.1.12,
WIN32/Borland C 4.0, etc. Although mcpp allows generation
of a preprocessor of various specs, the standard mode of the
executable compiled by GCC on Linux was used for this test.

3Borland C 5.5: Japanese version. Borland.12
4GCC 2.95.3: Bundled in VineLinux 3.2 or CygWIN 1.3.10.
5GCC 3.2: Compiled by the author on Linux.13
6ucpp 1.3: Portable open source software written by

Thomas Pornin. A compiler-independent preprocessor.14
7Visual C++ 2003: Visual C++ 2003. Microsoft.
8LCC-Win32 2003-08: Developed by Jacob Navia. Dennis

Ritchie’s C90 preprocessor is used as its preprocessing part.15
9Wave 1.0: Open source software written by Hartmut

Kaiser. Implemented using “Boost C++ preprocessor library”
written by Paul Mensonides et. al. Tested about a binary for
Windows.16

10mcpp 2.4: From V.2.0 onward, has been ported to Linux,
FreeBSD / GCC 2.95-3.2, CygWIN 1.3.10, LCC-Win32 2003-
08, Borland C 5.5 and Visual C++ 2003.

11GCC 3.4.3: Compiled by the author on Linux.
12Visual C 2005: Visual C++ 2005 Express Edition. Mi-

As shown in the table, mcpp is the best in every
aspect. Its conformance is perfect except it does not
implement the C++98 queer specification to convert
multi-byte character to UCN. It has more leads over
other preprocessors on quality issues, such as abun-
dant and accurate diagnostic messages, comprehen-
sive documentation, useful execution options, #prag-
mas for debugging, handling of various multi-byte
character encodings, and portability.

The second best preprocessor to mcpp is GCC
(GNU C) / cc1 (cpp). GCC presents almost no prob-
lems as long as it processes C90 conforming sources.
However, it still has the following problems, except

crosoft.
13LCC-Win32 2006-03: LCC-Win32 2006/03 version.
14GCC 4.1.1: Compiled by the author on Linux.
15Visual C 2008: Visual C++ 2008 Express Edition. Mi-

crosoft. 17

16Wave 2.0: Tested about binaries on Linux and Windows
compiled by the author from the source contained in Boost-
C++-Library 1.36.0.18

17mcpp 2.7.2: From V.2.4 onward, has been ported to GCC
3.3-4.1, MinGW/MSYS, Mac OS X/Apple-GCC and Visual
C++ 2005/2008. 19

5

0 100 200 300 400 500 600 700 800 900

perfect score

MCPP 2.7.2

Wave 2.0

Visual C 2008

GCC 4.1.1

LCC-Win32 0603

Visual C 2005

GCC 3.4.3

MCPP 2.4

Wave 1.0

LCC-Win32 0308

Visual C 2003

ucpp 1.3

GCC 3.2

GCC 2.95.3

Borland C 5.5

MCPP 2.0

DECUS cpp

C90 conformance (K&R spec) C90 conformance (new spec) C99, C++98 conformance quality

Figure 1: Validation Results of Each Preprocessor

for some unimplemented C99 and C++98 specifica-
tions, which will be implemented over time:

1. Diagnostic messages are insufficient. With the
-pedantic -Wall option, many problems can be
checked, but there still remain a lot of unchecked
problems.

2. It provides little functionality to output debug-
ging information.

3. Documentation is insufficient; there are some un-
clear or undocumented specifications.

4. GCC uses its own specifications that are incon-
sistent with the Standards. Extended specifica-
tions should be implemented with #pragma.

Compared with GCC V.2/cpp, GCC V.3/cc1 has
been much improved in these aspects, but is still in-
sufficient.

mcpp is inferior to GCC/cc1 only in processing
speed.

Other preprocessor has much more problems than
GCC. The following problems are commonly found
in many preprocessors.

1. As for the new specifications of C99 and C++98,
most of the preprocessors implement only half of
them.

2. Most preprocessors do not provide diagnostics
sufficiently.

3. Most preprocessors provide few diagnostics on
portability matters.

4. It is not uncommon to see off-target diagnostics
issued.

5. Most preprocessors do not provide document
sufficiently.

6

6. Most preprocessors cannot handle more than 1
or 2 multi-byte character encodings.

Moreover, at least 1 or 2 bugs are found in most
preprocessors.

5 Examples of Preprocessor
Bugs and Erroneous

Specifications

Each preprocessor contains various bugs and erro-
neous specifications, only some of which this section
cites. The samples are shown in figure 2.

5.1 Comment Generating Macro

Example-1 is a macro definition that is actually found
in a Visual C Platform SDK system header. This
definition is used as shown in example-2. This code
expects _VARIANT_BOOL to be expanded into //, com-
menting out that line. Actually, Visual C/cl.exe pro-
cesses this line as expected.

However, // is not a preprocessing-token. In ad-
dition, macro should be defined and expanded after
source is parsed into tokens and a comment is con-
verted into one space. Therefore, it is irrational for
a macro to generate comments. When this macro is
expanded into //, the result is undefined since // is
not a valid preprocessing-token.

This macro is, indeed, out of question, however,
it is Visual C/cl.exe, which allows such an outra-
geous macro to be processed as a comment, should
be blamed. This example reveals the following seri-
ous problems this preprocessor has:

1. Preprocessing is not token-based but character-
based in this example.

2. Preprocessing procedure (translation phases) is
implemented arbitrarily and lacks in logical con-
sistency.

5.1.1 Mcpp’s Diagnostic

mcpp issues some diagnostics while preprocessing
<windows.h>, and on the macro of example-2 issues a

example-1
#define _VARIANT_BOOL /##/

example-2
_VARIANT_BOOL bool;

example-3
#if MACRO_0 && 10 / MACRO_0

example-4
#if MACRO_0 ? 10 / MACRO_0 : 0

example-5
#if 1 / 0

example-6
#include <limits.h>
#if LONG_MAX + 1 > SHRT_MAX

Figure 2: Sample of Preprocessor Bugs

diagnostic as shown in figure 3. (The lines are broken
appropriately for printing.)

First, the source file name and the line number
which contains the macro call in question, diagnostic
message body, next, definition of the macro and its
location, then, each includer’s line which #include
the source file, tracing back the nested includes one
after the other. — It is clear what and where the
problem is.

5.2 Expressions That Should Be
Skipped Causes an Error

The expressions in example-3 and 4 are correct ones.
These expressions are so carefully written that a di-
vision is carried out only when a denominator is not
zero. However, some preprocessors perform a division
when MACRO_0 is zero and cause an error. Example-
3 used to cause an error in many preprocessors, but
nowadays it is processed properly. Example-4 still
causes an error in Visual C 2003, 2005, 2008, which
shows that its preprocessor does not implement basic
C specifications of expression evaluation correctly.

On the other hand, Borland C 5.5 issues a warning
to both example-3 and 4, which may not be definitely
wrong. However, Borland C issues the same warn-
ing to a real division by zero shown in example-5.
In other words, Borland C cannot tell correct source
code from wrong code. Turbo C issued the same er-

7

c:/program files/microsoft platform sdk/include/oaidl.h:442:
error: Not a valid preprocessing token "//"

in macro "_VARIANT_BOOL" defined as: #define _VARIANT_BOOL /##/
/* c:/program files/microsoft platform sdk/include/wtypes.h:1073 */
from c:/program files/microsoft platform sdk/include/oaidl.h: 442:

_VARIANT_BOOL bool;
from c:/program files/microsoft platform sdk/include/msxml.h: 274:

#include "oaidl.h"
...

Figure 3: A sample of diagnostic issued by mcpp

ror message to both correct expressions and incorrect
ones that cause a zero division error. Borland C sim-
ply degrades the error message to a warning. This
could not be called non-conforming, but indicates a
patchy work and poor quality of diagnostic messages.

5.3 Overflow is Overlooked

The constant expression in example-6 causes an over-
flow in C90. Most preprocessors do not issue a diag-
nostic to this overflow. In other words, any message
is not issued even if the value wraps round, and the
sign and the comparison result are reversed. GCC
and Borland C are inconsistent about this; they is-
sue a warning to some cases, but not to most.

6 Why Is Source Code Check

by Preprocessors
Required?

Now, we will see source code checking by mcpp of
the real world programs, taking examples of Glibc
and others.

Not a few C programs have preprocessing level
problems; there are ones that are content with suc-
cessful compilation in a particular compiler system
and lack of portability, ones that are unnecessarily
tricky, and ones that are still based on the specifi-
cations of a particular compiler system before C90.
These sources will spoil portability, readability and
maintainability, and, what is worse, they will be likely
bug-prone. Although, in many cases, it is easy to
rewrite such questionable sources into portable and
clear ones, however, they are often left as they are.

One of the reasons for the existence of such sources
is that preprocessing specifications before C90 were
very ambiguous, which still leaves a trail even now
when C99 Standard has been already established.
Another reason is that the existing preprocessors are
too reticent; since they pass questionable sources
without issuing messages, problems remain unno-
ticed.

6.1 How Much Do Preprocessors
Affect Sources?

By replacing a compiler-system-resident preprocessor
with mcpp, almost all the preprocessing problems
in source programs, ranging from potential bugs and
Standard violations to portability problems, can be
identified.

Since mcpp V.2.0, I have reported the results of
applying mcpp to FreeBSD 2.2.2 (May 1997) kernel
and libc sources. libc sources had almost no prob-
lems, but some kernel sources had some, although
such sources account for only a small portion of the
total number of source programs. Many of the prob-
lems were not originated in 4.4BSD-lite but written
during porting to FreeBSD and enhancement.

When I applied mcpp V.2.3 then under develop-
ment to preprocess Linux/Glibc (GNU LIBC) 2.1.3
(February 2000) sources, I found a lot of prob-
lems. These problems were frequently found in the
programs that use traditional preprocessing speci-
fications in UNIX-like systems and those that use
GCC/cpp’s own or undocumented specifications. I
think GCC/cpp’s default passing of such undesirable
sources without issuing a message not only preserves
them but also produces new ones. It is more prob-
lematic that such coding is not necessarily found in

8

old sources only; it is sometimes found in newly writ-
ten sources. Sometimes, similar problems are found
even in system headers.

On the other hand, there are some improvements;
for example, nested comments, a Standard violation
that was frequently found by the middle of 1990s on
UNIX-like systems, are no longer found. This is be-
cause GCC/cpp no longer allowed them. This indi-
cates how much a preprocessor affects sources coding.

Later I checked Glibc 2.4 (March 2006) sources
with mcpp, and found that most of the portabil-
ity problems I had noticed in Glibc 2.1.3 were not
resolved after the six years of updates. Although the
very old style sources such as “multi-line string lit-
eral” have disappeared, those sources which depend
on GCC’s local specifications and undocumented be-
haviors did not decreased. On the contrary, they in-
creased largely.

6.2 Sample Glibc Source Code
Fragment

To see some preprocessing problems, let me take ex-
amples of Glibc 2.4 source code fragments.

6.2.1 ∗.S Files That Require
Preprocessing

∗.S files are assembler sources with inserted prepro-
cessing directives, such as #if, #include, and C
comments. Some of them have also macros embed-
ded.

Since assembler source is not consisted of C token
sequence, it accompanies some risks to preprocess it
by C preprocessor. To process an assembler source,
a preprocessor must pass such characters as % or $
(which are not used in C except in string literal or in
character constant) as they are, and retain existence
or non-existence of spaces as they are.

Example-1 of figure 4 is part of a ∗.S file.
#ifdef SHARED intends to be a directive of C. On
the other hand, the latter part of each line starting
with # are supposed to be comments. # column. is,
however, syntactically indistinguishable from invalid
directive, since the # is the first non-white-space-
character of the line. # + DW_EH_PE_sdata4 causes
even syntax error in C.

The same source has a line as example-2. This
is a macro call and is expected to be expanded as
example-3, though I omit macro definitions here.
The part pthread_cond_wait@@GLIBC_2.3.2 is a se-
quence to be generated concatenating some parts by
operator. There is, however, no C token nor pp-
token containing @ (except string literal or character
constant).

This source file is full of grammatical errors and
undefined behaviors when processed by Standard C
preprocessing, and even the lines free from errors are
not at all assured to be preprocessed as expected.

To process assembler codes with C, it is recom-
mended that the asm() function should be used when-
ever possible, to embed the assembler code in a string
literal, and that not ∗.S but ∗.c should be used as a
file name. In this way, directive lines other than #in-
clude can be used in the middle of the lines of string
literals. The assembler sources with macros embed-
ded are usually unable to be dealt with asm(). This
type of source is not a C source and essentially should
be processed with an assembler macro processor.

6.2.2 Variadic Macro of GCC Spec

GCC has variadic macro of its own specification like
example-1 of figure 5 since before C99. In addi-
tion, GCC 3 implemented another peculiar syntax
like example-2. GCC 2.95.3 and later implements
C99 spec one, too, which is exemplified as example-
3.

Both of the GCC specs are very queer ones, and do
not correspond to C99 spec one-to-one. While C99
spec requires at least one real argument for variable
arguments, GCC specs permit absence of argument,
and the ## is not token concatenation operator here,
but it has a special meaning to remove the imme-
diately preceding comma in case real argument for
variable argument is absent. Old GCC spec even uses
“named variable argument” as args... which is not
a C pp-token.

In Glibc sources, all the variadic macros used are
the old GCC spec ones, and no C99 spec nor even
GCC 3 spec one is found. Moreover, there are ex-
tremely many macro calls which lack real argument
for variable argument and hence cause removal of pre-
ceding comma. In short, the old spec has been used
all the time until now.

9

example-1
.byte 8 # Return address register

column.
#ifdef SHARED

.uleb128 7 # Augmentation value length.

.byte 0x9b # Personality: DW_EH_PE_pcrel
+ DW_EH_PE_sdata4

example-2
versioned_symbol (libpthread, __pthread_cond_wait, pthread_cond_wait,

GLIBC_2_3_2)

example-3
.symver __pthread_cond_wait, pthread_cond_wait@@GLIBC_2.3.2

Figure 4: Glibc source sample 1: ∗.S file

example-1
#define libc_hidden_proto(name, attrs...) hidden_proto (name, ##attrs)

example-2
#define libc_hidden_proto(name, ...) hidden_proto (name, ## __VA_ARGS__)

example-3
#define libc_hidden_proto(name, ...) hidden_proto (name, __VA_ARGS__)

Figure 5: Glibc source sample 2: variadic macro of GCC-spec

As a variadic macro specification, C99 one is the
most reasonable and portable. When a macro call
needs no real argument for variable argument, it is
recommended to use some harmless argument such
as 0 or NULL.

6.2.3 Macro Expanded to ‘defined’

There is a macro definition shown in example-1 of
figure 6 and the macro is used as shown in example-
2. However, the behavior is undefined in Standard
C when a #if line have a defined pp-token in a
macro expansion result. Apart from it, this macro
invocation is first replaced as example-3. Supposing
that _STATBUF_ST_BLKSIZE is defined as example-
4, it finally expands as shown in example-5. When
_STATBUF_ST_BLKSIZE is not defined, it results as
example-6. Both are #if expression syntax errors,
of course.

The same thing would happen to GCC, if
_STATBUF_ST_BLKSIZE were not on a #if line. How-
ever, on the #if line, GCC stops macro expansion
at example-3 and evaluates it as a #if expression.
This behavior lacks of consistency in that how to ex-

pand a macro differs between when the macro is on
a #if line and when on other lines. It also lacks of
portability. This macro should be defined as shown
in example-7. Or the #if line of example-2 should
be written as example-8 without using the macro
_STATBUF_ST_BLKSIZE.

By the way, mcpp issues an error on example-
2, and in addition, if you sandwich the line with
#pragma directives as example-9, it outputs macro
expansion process, and you can grasp what is wrong.

6.2.4 Object-Like Macros Expanded as
Function-like Macros

Some object-like macros are defined to be expanded
to function-like macro names. These macros are ex-
panded as function-like macros. This happens be-
cause the token sequence immediately following the
object-like macro invocations are involved in macro
expansion. This way of expansion is a traditional
specification before C90, which was approved by
C90. In that sense, it can be described as pro-
viding greater portability. For example, an object-
like macro is defined as example-1 of figure 7, while

10

example-1
#define _G_HAVE_ST_BLKSIZE defined (_STATBUF_ST_BLKSIZE)

example-2
#if _G_HAVE_ST_BLKSIZE

example-3
defined (_STATBUF_ST_BLKSIZE)

example-4
#define _STATBUF_ST_BLKSIZE

example-5
defined ()

example-6
defined (0)

example-7
#if defined (_STATBUF_ST_BLKSIZE)
#define _G_HAVE_ST_BLKSIZE 1
#endif

example-8
#if defined (_STATBUF_ST_BLKSIZE)

example-9
#pragma MCPP debug expand token
#if _G_HAVE_ST_BLKSIZE
#pragma MCPP end_debug

Figure 6: Glibc source sample 3: a macro expanded to ‘defined’

example-1
#define _IO_close close_not_cancel

example-2
#define close_not_cancel(fd) __close_nocancel (fd)

example-3
#define _IO_close(fd) close_not_cancel(fd)

Figure 7: Glibc source sample 4: object-like macro expanded to name of a function-like macro

11

close_not_cancel is defined as shown in example-2.
What seems to be an object-like macro that is ac-

tually expanded as a function-like macro is inferior in
readability. There is no reason to write in this way at
least in this example. This way of writing originates
in an idea of editor-like text replacement, which is
not desirable for C function-like macro. This macro
should be written as a function-like macro from the
beginning, as shown in example-3.

6.2.5 Sources Depending on Trivialities of
GCC’s Behavior

Besides, among the scripts or tools used in making
Glibc, I found some codes which unnecessarily de-
pend on the trivial details of GCC behavior. Some
of them even expect number of spaces on the line top
of preprocessed output exactly as GCC emits, and
some other expects exact number of spaces between
pp-tokens preprocessed as GCC does.

In addition to the above, there are some more un-
desirable codings, most of which can be easily written
in a clearer and more readable way. The source pro-
grams in question account for only a small portion of
total number of the Glibc source files that extends to
several thousands, however, if GCC by default had
issued a warning to such programs, they would have
been written in a quite different way from the begin-
ning.

In the world of open source software, most of the
preprocessing portability problems were trails of pre-
C90 traditional UNIX codings, until mid-nineties.
Nowadays, such extremely old style codings have de-
creased largely, instead, most of the problems are
those which depend on GCC’s local specifications.

In Glibc, such GCC-dependent sources have not
decreased since year 2000 till 2006, they have rather
increased. In a large scale software, many source files
are interrelated each other, and change of their inter-
faces become difficult as time passes, therefore even
newly written sources follow the existing interfaces.
On the other hand, change of GCC behavior breaks
many sources, and the possible influence becomes
greater with time, therefore GCC becomes difficult
to change its behavior. I believe that both of GCC
and Glibc need to tidy up their old local specifications
and old interfaces drastically in the near future.

7 Principles of C
Preprocessing and Mcpp

Implementation

Behind the many preprocessing problems identified
by mcpp and its Validation Suite, there lies a confu-
sion about principles of C preprocessing. The princi-
ples and specifications of C preprocessing before C90
were quite ambiguous. C90 gave the first overall def-
inition of C preprocessing, going back to its prin-
ciples. Most existing preprocessors, however, seem
to have implemented each specifications of the Stan-
dard one by one without C preprocessing principles
being made clear, thus prolonging the problems. Fur-
thermore, C90’s own contradictions and ambiguities
stemming from the historical background, which have
not been revised even by C99, makes the problem
more complex.

Some principles may be reasonably extracted from
C90 preprocessing specifications:

1. Preprocessing is token-based in principle.

2. The syntax of macro call with arguments is sim-
ilar to that of function call.

3. Processing of macros is one of the preprocessing
tasks and have no priority over other processing.

4. Preprocessing is the phase of “pre”processing in-
dependent from the execution environment, and
requires little implementation-defined parts.

Those are also the principles of mcpp implemen-
tation.

7.1 Token-Based Processing

C preprocessing is “token-based” in principle. Since
the principle had been ambiguous before C90, an
idea of character-based text processing came in. Af-
ter C90, many preprocessors have overlooked or even
allowed themselves to perform character-based text
processing, still leaving the problem. What is worse,
C90 itself contains some compromising parts with
character-based processing, as in the specifications of
operator or header-name token. (For the discus-
sion on this issue, see section 2.7 of cpp-test.html.)

12

mcpp has a program structure that strictly fol-
lows the token-based preprocessing principle, which
is quite different from traditional character-based
preprocessing. Other preprocessors seem to aim at
token-based processing, but character-based process-
ing got mixed occasionally.

In Borland C 5.5 or Visual C 2003, 2005 and 2008,
for example, a token generated by macro expansion
is sometimes merged with the proceeding or follow-
ing one to become one token. This is an example
of half-hearted token handling. Also many prepro-
cessors do not issue any warning to an illegal token
generated by macro expansion because they simply
neglect checking a token generated by preprocessing.

7.2 Function-Like Expansion of
Function-Like Macro

Expansion of a macro without an argument is rather
straightforward. On the other hand, for expansion
of macros with arguments, many specifications have
been existed historically, thus leading to tremendous
confusion about it. Although C90 seems to have put
an end to this confusion, it still lingers. For details
on this issue, refer to 2.7.6 of cpp-test.html.

This confusion is due to two factors: Text-based
thinking that originates in editor-like text replace-
ment, and the traditional specification on macro ex-
pansion, that is, if a replacement list forms the first
half part of another argument macro invocation, the
succeeding token sequence are involved in rescanning
during macro expansion. The example shown in 6.2.4
is one of the least serious cases. This results from
the fact that C preprocessor’s traditional implemen-
tation happens to have such a deficiency. Is not it a
bug specification, although unintentional, which in-
troduced various abnormal macros?

C90 tried put an end to this confusion about how
to expand macros with arguments by naming them
“function-like macro” and establishing a specification
similar to that of a function call. In other words, C90
first intended that function-like macro and function
are interchangeable each other. C90 articulated that
a macro in an argument is first expanded and then
a parameter in a replacement list is substituted with
the corresponding argument and that macro expan-
sion in an argument must be completed within the
argument. (Before C90, it seems that, in many cases,

a parameter is first substituted with an argument and
then is expanded during rescanning.)

On the other hand, however, C90 approved the
bug specification that succeeding token sequence are
involved in rescanning, which violates the function-
like processing principle, resulting in prolonged con-
fusion. At the same time, C90 added the stipulation
that a macro with the same name should not be re-
replaced during rescanning to prevent infinite recur-
sion in macro expansion. However, because of its ap-
proval of involvement of succeeding token sequence,
the range in which such re-replacement is inhibited
still remains unclear. Thus, C Standards continue to
sway, issuing a corrigendum and then revising it.

7.3 Separation of Macro Expansion
from the Other Processing

Many C preprocessors seem to have a traditional pro-
gram structure in which a replacement list and the
text succeeding the macro call are read successively
during macro rescanning. Each time they replace
a macro invocation with its replacement list, they
repeat rescanning for the next macro with its start
point shifting gradually.

This traditional program structure illustrates the
historical background of C preprocessors: they were
derived from macro processors. In some preproces-
sors, including GCC 2/cpp, a macro rescanning rou-
tine is de facto main routine of a preprocessor. The
main routine rescans text with its start point shifting
gradually until it reaches the end of an input file, dur-
ing the course of which, a routine to process prepro-
cessing directives is called. This is an old macro pro-
cessor structure with a disadvantage that macro ex-
pansion and other processing are likely to got mixed.
As shown in 6.2.3, how to expand a macro differs be-
tween when the macro is on a #if line and when on
other lines. This is one of the examples of this mix-
ture. (GCC 2/cpp internally treats defined on a #if
line as a special macro.)

mcpp provides a macro expansion routine in Stan-
dard and post-Standard modes that is quite different
from traditional routines. The macro expansion rou-
tine is dedicated to macro expansion and performs no
other tasks. Likewise, other routines ask the routine
for all macro expansion and only receive the result.
The macro expansion routine has a recursive struc-

13

ture, not of a repeating one, with a simple mechanism
to prevent re-replacement of a macro with the same
name. Expansion of a function-like macro strictly
follows the function-like processing principle, and res-
canning is basically completed within a macro invo-
cation. This is all that the macro expansion rou-
tine does in post-Standard mode. In Standard mode,
the macro expansion routine provides a mechanism to
deal with the irregular specification in C Standards
so that it can exceptionally handle succeeding token
sequence only when necessary. This makes a program
structure more clear but also makes it easy to detect
an abnormal macro to issue a warning.

7.4 Portable C Preprocessor

Although one of the reasons for existence of the pre-
processing phase in C is to provide greater portabil-
ity, preprocessing itself has often spoiled it, because
in most compiler systems the preprocessor has been
an addition to the compiler and has had unnecessarily
implementation-specific behaviors. In contrast, C90
specified preprocessing as a phase mostly indepen-
dent from the execution environment, hence guaran-
teed rather great portability.

What is more, thanks to C90, most parts of a
preprocessor itself can be written portable, unlike
other components of a C compiler system. Thus,
it might be even possible for every compiler system
to use the same high quality and portable prepro-
cessor. A portable preprocessor for portable source
has been ready to appear since C90. Development of
mcpp began motivated by this situation. Though
many existing compilers have absorbed preproces-
sor into themselves, it is not a good program struc-
ture where a preprocessor and a compiler interdepend
complexly. An independent preprocessor has a merit
of decreasing compiler-dependent behaviors and in-
creasing portability of preprocessing as an indepen-
dent phase.

The above principles were embodied in the C90
preprocessing stipulations. At the same time, the
above contradictions also existed, which were left to
later Standard to solve. C99, however, solved none of
these basic problems, while it added some new fea-
tures. What is worse, there are a few areas where
simple-and-clearness of the specifications were lost
by the appended features. C++98 has more prob-

lems than C99. (For these problems, refer to cpp-
test.html.)

After all, it can be said that, in the history of C
preprocessing, C90 was the one and only attempt to
clarify the basics of the language, though not satis-
factory enough. Today, the specifications began to
diffuse again, and clarification stepping into the ba-
sics is required. I think that the direction should be to
complete the principles which C90 did only halfway.

mcpp is a C preprocessor which is constructed on
the principles of “token-based processing”, “function-
like expansion of function-like macro”, “separation of
macro expansion routine from other processing” and
“portable preprocessing”. In its conforming mode,
mcpp obeys the Standard’s irregularities using some
modifications on these principles. In addition, mcpp
provides preprocessing in what I call “post-Standard”
mode, in which these principles are obeyed thor-
oughly by eliminating irregularities from Standards
themselves and reorganizing them. If no problems
were detected in this mode, the source can be said
as having high portability as long as preprocessing is
concerned.

8 Current Version and
Update Plans

8.1 V.2.7

mcpp V.2.7 was released in March 2008, and was an
update to V.2.6.4 which had been released in May
2007. The updated points are as follows:

1. Implemented ”macro notification mode” to out-
put informations on macros embedded in com-
ments. In this mode, you can reconstruct macro
calls and their locations on source file from pre-
processed output. This mode was implemented
for convenience of refactoring tools of C/C++.

2. Added portings to Mac OS X / Apple-GCC and
Visual C++ 2008.

3. Added comments on firefox 3.0b3pre source and
Mac OS X system headers.

After it, mcpp V.2.7.1 and V.2.7.2 were released
in May 2008 and November 2008, respectively. These
are bug-fix versions of V.2.7.

14

8.2 Update Plans for the Future

Updating of mcpp is far behind of the previous plan,
and implementation of unplanned features are inter-
rupting in. At present, following updates are planned
for the near future versions of mcpp.

1. mcpp diagnostic messages will be stored in a
separate file so that anyone can add diagnostic
messages in various languages at any time.

2. An option to automatically rewrite unportable
source programs to portable ones will be imple-
mented.

3. A series of testcases for testing mcpp’s own
specifications will be created in Validation Suite.

9 Conclusion

I have been developing a C preprocessor mcpp aim-
ing at the highest conformance, the highest qual-
ity and usefulness for source checking. Since vali-
dation system is indispensable for developing a lan-
guage processing system, and no adequate one existed
for preprocessor, I developed an exhaustive validation
suite for preprocessor in parallel to mcpp. As a re-
sult, I have succeeded to show superiority of mcpp
over other preprocessors. Besides, I showed advan-
tage of a preprocessor independent from compiler
systems, in decreasing compiler-dependent behaviors
and assuring portability of preprocessing. Also, I dis-
cussed the implementation method of C preprocessor
and asserted that it is vital for an excellent prepro-
cessor to construct program on the ground of clear
principles.

It was in 1992 when I began to develop mcpp
based on DECUS cpp. After ten years, mcpp
was adopted to one of the “Exploratory Software
Projects”, which gave me a chance to send it out into
the world. With the finishes that extended for nearly
two years, I completed a C preprocessor that I think
ranks number one in the world. mcpp with its En-
glish documents became ready for international eval-
uation. Moreover, I was estimated as one of the high-
est class programmers by the achievement of “Ex-
ploratory Software Projects”. I am also satisfied with

myself, who have done a good job as an amateur pro-
grammer of early old age.

I am still updating mcpp even after the project,
and have implemented many features and ported to
many systems getting cooperations of several pro-
grammers. I will keep on updating. Many C pro-
grammers comments and feedback, as well as partic-
ipation in mcpp development are welcome!

Related Materials and URLs

[1] Information-technology Promotion Agency
(IPA), Japan,
“Exploratory Software Projects”.
http://www.ipa.go.jp/jinzai/esp/

[2] ISO/IEC. ISO/IEC 9899:1990(E) Program-
ming Languages – C. 1990.

[3] ISO/IEC.
ibid. Technical Corrigendum 1. 1994.

[4] ISO/IEC.
ibid. Amendment 1: C integrity. 1995.

[5] ISO/IEC.
ibid. Technical Corrigendum 2. 1996.

[6] ISO/IEC. ISO/IEC 9899:1999(E) Program-
ming Languages – C. 1999.

[7] ISO/IEC.
ibid. Technical Corrigendum 1. 2001.

[8] ISO/IEC.
ibid. Technical Corrigendum 2. 2004.

[9] ISO/IEC. ISO/IEC 14882:1998(E) Program-
ming Languages – C++. 1998.

[10] ISO/IEC. ISO/IEC 14882:2003(E) Program-
ming Languages – C++. 2003.

[11] Martin Minow, DECUS cpp.
http://www.isc.org/index.pl?/

sources/devel/

[12] Borland Software Corp.,
Borland C++ Compiler 5.5
http://www.codegear.com/

downloads/free/cppbuilder/

15

[13] Free Software Foundation, GCC.
http://gcc.gnu.org/

[14] Thomas Pornin., ucpp.
http://pornin.nerim.net/ucpp/

[15] Jacob Navia., LCC-Win32.
http://www.cs.virginia.edu/

~lcc-win32/

[16] Hartmut Kaiser, Wave V.1.0.0.
http://spirit.sourceforge.net/

[17] Microsoft Corporation,
http://www.microsoft.com/express/

download/

[18] Hartmut Kaiser, Wave V.2.0.0.
http://boost.sourceforge.net/

[19] Kiyoshi Matsui, mcpp.
http://mcpp.sourceforge.net/

[20] HighWell, Inc. Limited Company.
http://www.highwell.net/

16

