// // STORAGE.CPP // // Source file for ArchiveLib 1.0 // // Copyright (c) Greenleaf Software, Inc. 1994 // All Rights Reserved // // CONTENTS // // ALStorage::operator new() // ALStorage::ALStorage() // ALStorage::~ALStorage() // ALStorage::UpdateCrc() // ALStorage::Open() // ALStorage::Create() // ALStorage::Close() // ALStorage::GetCrc32() // ALStorage::InitCrc32() // ALStorage::ReadBuffer() // ALStorage::WriteBuffer() // ALStorage::WritePortableShort() // ALStorage::WritePortableLong() // ALStorage::ReadPortableShort() // ALStorage::ReadPortableLong() // ALStorage::WriteString() // ALStorage::ReadString() // ALStorage::Tell() // ALStorage::YieldTime() // ALStorage::WriteStorageObjectData() // ALStorage::ReadStorageObjectData() // // DESCRIPTION // // This file contains all of the source code for the member functions // of ALStorage. AlStorage has pure virtual functions, so you can't // ever instantiate one of these guys. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // // #include "arclib.h" #pragma hdrstop #include // // void * ALStorage::operator new( size_t size ) // // ARGUMENTS: // // size : The number of bytes needed to create a new ALStorage object. // // RETURNS // // A pointer to the newly allocated storage area, or 0 if no storage // was available. // // DESCRIPTION // // When using a DLL, it is easy to get into a dangerous situation when // creating objects whose ctor and dtor are both in the DLL. The problem // arises because when you create an object using new, the memory for // the object will be allocated from the EXE. However, when you destroy // the object using delete, the memory is freed inside the DLL. Since // the DLL doesn't really own that memory, bad things can happen. // // But, you say, won't the space just go back to the Windows heap regardless // of who tries to free it? Maybe, but maybe not. If the DLL is using // a subsegment allocation scheme, it might do some sort of local free // before returning the space to the windows heap. That is the point where // you could conceivably cook your heap. // // By providing our own version of operator new inside this class, we // ensure that all memory allocation for the class will be done from // inside the DLL, not the EXE calling the DLL. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // #if defined( AL_BUILDING_DLL ) void AL_DLL_FAR * AL_PROTO ALStorage::operator new( size_t size ) { return ::new char[ size ]; } #endif // // ALStorage::ALStorage( const char *file_name, // size_t size, // const enum ALStorageType object_type, // ALCase name_case ) // // ARGUMENTS: // // file_name : The name to assign to the mName data member of the // newly created storage object. // // size : The size of the I/O buffer that is going to be used // for the storage object. ALFile uses 4096 as a default. // // object_type : The type of object, as defined in ALDEFS.H. Good // values include AL_FILE_OBJECT and AL_MEMORY_OBJECT. // // name_case : The case sensitivity of the object name. For objects // such as ALFile, AL_MIXED is a no-no. Those objects // need to be forced to convert names to all upper // or all lower, because the operating system considers // file names to be case insensitive. // // RETURNS // // Nothing, it is a constructor. // // DESCRIPTION // // The constructor for ALStorage gets called from the constructor of // derived classes. It has to initialize all sorts of data members. // First, in the initializer list, it sets up the mName data member, // as well as muBufferSize and miStorageObjectType. The latter two // data members are set to be const so I can make them public, which // means we have to initialize them in the initializer list. // // In the body of the constructor, we initialize a bunch of data members, // none of which mean anything at this point. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // AL_PROTO ALStorage::ALStorage( const char AL_DLL_FAR *file_name, size_t size, const enum ALStorageType object_type, ALCase name_case ) : mName( file_name, name_case ), miStorageObjectType( object_type ), muBufferSize( size ) { mpcBuffer = 0; muBufferValidData = 0; muWriteIndex = 0; muReadIndex = 0; mlFilePointer = 0; miUpdateCrcFlag = 0; mlCrc32 = 0xffffffffL; mlSize = -1L; mpMonitor = 0; miCreated = 0; if ( mName.GetName() == 0 ) mStatus.SetError( AL_CANT_OPEN_BUFFER, "Allocation of buffer failed in " "ALStorage constructor" ); } // // ALStorage::~ALStorage() // // ARGUMENTS: // // No arguments for destructors. // // RETURNS // // No returns from destructors. // // DESCRIPTION // // In debug mode, we first check to make sure we are destroying the // right type of object. // // The only thing left to do is free up the I/O buffer if it is still // allocated. This piece of work probably isn't necessary. Since this // is a virtual destructor, we will be called after the destructors // for the derived class. Any derived class that is doing its job // will make sure that it calls Close() before destroying itself. If // it doesn't, it will probably be leaving unfinished business behind // that we aren't going to be able to deal with here. Even so, we will // be diligent in our attention to detail. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // AL_PROTO ALStorage::~ALStorage() { AL_ASSERT( GoodTag(), "~ALStorage: attempting to delete invalid object" ); if ( mpcBuffer ) Close(); } // // This giant table is used by the CRC routines. These are the coefficients // for calculating the CCITT 32 bit CRC. I typed these in from memory, so // I hope they are correct. // static unsigned long ccitt_32[ 256 ] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; // // void ALStorage::UpdateCrc( size_t count ) // // ARGUMENTS: // // count : The number of characters to process in the I/O buffer. // // RETURNS // // Nothing. // // DESCRIPTION // // If CRC checking has been turned on for the storage object, this // routine will be called every time LoadBuffer() or FlushBuffer() // are called. It does CRC checking on a buffer full of data at // a time. Hopefully this means the compiler can optimize the // heck out of this code. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // void AL_PROTO ALStorage::UpdateCrc( size_t count ) { unsigned char *p = (unsigned char *) mpcBuffer; while ( count-- != 0 ) mlCrc32 = ( ( mlCrc32 >> 8 ) & 0x00FFFFFFL ) ^ ( ccitt_32[ ( (int) mlCrc32 ^ *p++ ) & 0xff ] ); } // // int ALStorage::Open() // // ARGUMENTS: // // None. // // RETURNS // // AL_SUCCESS, or AL_CANT_OPEN_BUFFER on memory allocation failure. // If the object was already in an error state, it is very possible to // get some other error code < 0. // // DESCRIPTION // // Any derived class needs to have its own Open() function. However, // the derived class can also call this Open() function in the base // class to do some odds and ends for it. The most important thing it // does is allocate the I/O buffer, which is what makes ALStorage a // relatively fast way to read and write data. Although the buffer // is in place, there is no data in it, so this guy also sets up the // indices and pointers to reflect that. // // Upon exit, all you need to to is start reading or writing, and the // whole thing should be ready to go. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::Open() { if ( mStatus < AL_SUCCESS ) return mStatus; if ( muBufferSize != 0 ) mpcBuffer = new unsigned char[ muBufferSize ]; muBufferValidData = 0; muWriteIndex = 0; muReadIndex = 0; mlFilePointer = 0; miUpdateCrcFlag = 0; mlCrc32 = 0xffffffffL; if ( mpcBuffer == 0 ) return mStatus.SetError( AL_CANT_OPEN_BUFFER, "Allocation of buffer failed in Open()" ); return AL_SUCCESS; } // // int ALStorage::Create() // // ARGUMENTS: // // None. // // RETURNS // // AL_SUCCESS, or AL_CANT_OPEN_BUFFER on memory allocation failure. // If the object was already in an error state, it is very possible to // get some other error code < 0. // // DESCRIPTION // // This function is nearly identical to ALStorage::Open(). // // Any derived class needs to have its own Create() function. However, // the derived class can also call this Create() function in the base // class to do some odds and ends for it. The most important thing it // does is allocate the I/O buffer, which is what makes ALStorage a // relatively fast way to read and write data. Although the buffer // is in place, there is no data in it, so this guy also sets up the // indices and pointers to reflect that. // // Upon exit, all you need to to is start writing, and the // whole thing should be ready to go. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::Create() { if ( mStatus < AL_SUCCESS ) return mStatus; mpcBuffer = new unsigned char[ muBufferSize ]; muBufferValidData = 0; muWriteIndex = 0; muReadIndex = 0; mlFilePointer = 0; miUpdateCrcFlag = 0; mlCrc32 = 0xffffffffL; miCreated = 1; if ( mpcBuffer == 0 ) return mStatus.SetError( AL_CANT_OPEN_BUFFER, "Allocation of buffer failed in Open()" ); return AL_SUCCESS; } // // int ALStorage::Close() // // ARGUMENTS: // // None. // // RETURNS // // The current integer status of the object. Hopefully this will be // AL_SUCCESS, but it could well be a value < AL_SUCCESS. // // DESCRIPTION // // Just like with Open(), must derived classes will have their own // versions of Close(). They can call this version to delete the I/O // buffer if they feel like it is too hard to do themselves. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::Close() { if ( mpcBuffer ) { delete[] mpcBuffer; mpcBuffer = 0; } return mStatus; } // // long ALStorage::GetCrc32() // // ARGUMENTS: // // None. // // RETURNS // // The current value of the CRC-32. // // DESCRIPTION // // This function is used to get the CRC-32 of a storage object. But it // does a little bit more than just give you the CRC. First, it makes // sure the buffers have been flushed, so that the CRC is accurate. If // we didn't do this we might try to get the CRC on an incompletely // written file. // // Once we get the CRC,the miUpdateCrcFlag is set to 0, which means // that from here on out the value will not be updated. So retrieving // the CRC means you are no longer interested in further calculation. // It also means you can trust the value you just read, because it // will never be modified again. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // long AL_PROTO ALStorage::GetCrc32() { if ( IsOpen() && miUpdateCrcFlag ) FlushBuffer(); miUpdateCrcFlag = 0; return mlCrc32; } // // void ALStorage::InitCrc32( unsigned long seed = 0xffffffffL ) // // ARGUMENTS: // // seed : The long value to start the CRC off at. There is probably // no reason to change this from the default value, although // I won't be surprised if someone comes up with one. // // RETURNS // // Nothing. // // DESCRIPTION // // Calling this function kicks off the CRC calculation for a given // storage object should be done immediately after the object is // opened. Once the miUpdateCrcFlag is set, the CRC will be updated // every time a LoadBuffer() or FlushBuffer() is called. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // void AL_PROTO ALStorage::InitCrc32( unsigned long seed /* = 0xffffffffL */ ) { miUpdateCrcFlag = 1; mlCrc32 = seed; } // // size_t ALStorage::ReadBuffer( unsigned char *buf, size_t length ) // // ARGUMENTS: // // buf : The buffer that is going to receive input characters. // // length : The number of bytes you want to read. // // RETURNS // // The number of bytes read in, always. If this function generates an // error, it will be found in the mStatus member. // // DESCRIPTION // // We could write a simple version of this function by just calling // ReadChar() over and over, but it would be nice to do things // a little more efficiently. Since we have this nice big buffer // full of data ready to read, it makes sense to copy big chunks of // it in one fell swoop. That is what this guy does. It sits in a loop // doing a memcpy() followed by LoadBuffer() until all of the data // that has been asked for got moved. As data is read in, we have to // update the data member muReadIndex. Other data members will get // updated by LoadBuffer(). // // REVISION HISTORY // // May 26, 1994 1.0A : First release // size_t AL_PROTO ALStorage::ReadBuffer( unsigned char *buf, size_t length ) { size_t bytes_left_to_read = length; size_t buffer_bytes_available; while ( bytes_left_to_read ) { buffer_bytes_available = muBufferValidData - muReadIndex; if ( buffer_bytes_available == 0 ) { if ( LoadBuffer( mlFilePointer ) < 0 ) return length - bytes_left_to_read; buffer_bytes_available = muBufferValidData; } if ( bytes_left_to_read <= buffer_bytes_available ) { memcpy( buf, mpcBuffer + muReadIndex, bytes_left_to_read ); muReadIndex += bytes_left_to_read; return length; } else { memcpy( buf, mpcBuffer + muReadIndex, buffer_bytes_available ); buf += buffer_bytes_available; bytes_left_to_read -= buffer_bytes_available; muReadIndex += buffer_bytes_available; if ( LoadBuffer( mlFilePointer ) < 0 ) return length - bytes_left_to_read; } } return length; } // // size_t ALStorage::WriteBuffer( const unsigned char *buf, // size_t length ) // // ARGUMENTS: // // buf : The buffer that is contains the output data. // // length : The number of bytes you want to write. // // RETURNS // // The number of bytes written, always. If this function generates an // error, it will be found in the mStatus member. // // DESCRIPTION // // We could write a simple version of this function by just calling // WriteChar() over and over, but it would be nice to do things // a little more efficiently. Since we have this nice big buffer // just waiting for data, it makes sense to copy big chunks to // it in one fell swoop. That is what this guy does. It sits in a loop // doing a memcpy() followed by FlushBuffer() until all of the data // that was ready to go has been sent. As data is written, we have to // update the data member muWriteIndex. Other data members will get // updated by FlushBuffer(). // // REVISION HISTORY // // May 26, 1994 1.0A : First release // size_t AL_PROTO ALStorage::WriteBuffer( const unsigned char *buf, size_t length ) { size_t buffer_bytes_free; size_t write_bytes_left = length; if ( mStatus < 0 ) return 0; while ( write_bytes_left > 0 ) { buffer_bytes_free = muBufferSize - muWriteIndex; if ( buffer_bytes_free == 0 ) { if ( FlushBuffer() < 0 ) return length - write_bytes_left; buffer_bytes_free = muBufferSize; } if ( write_bytes_left <= buffer_bytes_free ) { memcpy( mpcBuffer + muWriteIndex, buf, write_bytes_left ); muWriteIndex += write_bytes_left; return length; } else { memcpy( mpcBuffer + muWriteIndex, buf, buffer_bytes_free ); muWriteIndex += buffer_bytes_free; buf += buffer_bytes_free; write_bytes_left -= buffer_bytes_free; if ( FlushBuffer() < 0 ) return length - write_bytes_left; } } return length; } // // int ALStorage::WritePortableShort( short int short_data ) // // ARGUMENTS: // // short_data : A 16 bit int that is going to be written out in // little endian format. // // RETURNS // // AL_SUCCESS if all goes well. Otherwise, some error code < AL_STATUS. // // DESCRIPTION // // In order to make sure our archives can be read and written on all sorts // of systems, we have a few functions that are used to write numerical // data in a portable fashion. This function writes short integers in // little endian format (which is not native Intel format). The complementary // function, ReadPortableShort(), reads short integers back using the // same format. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::WritePortableShort( short int short_data ) { WriteChar( short_data >> 8 ); WriteChar( short_data ); return mStatus; } // // int ALStorage::WritePortableLong( long int long_data ) // // ARGUMENTS: // // long_data : A 32 bit long int that is going to be written out in // little endian format. // // RETURNS // // AL_SUCCESS if all goes well. Otherwise, some error code < AL_STATUS. // // DESCRIPTION // // In order to make sure our archives can be read and written on all sorts // of systems, we have a few functions that are used to write numerical // data in a portable fashion. This function writes long integers in // little endian format (which is not native Intel format). The // complementary function, ReadPortableLong(), reads long integers back // using the same format. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::WritePortableLong( long long_data ) { WriteChar( (int) ( long_data >> 24 ) ); WriteChar( (int) ( long_data >> 16 ) ); WriteChar( (int) ( long_data >> 8 ) ); WriteChar( (int) long_data ); return mStatus; } // // int ALStorage::ReadPortableShort( short int &short_data ) // // ARGUMENTS: // // short_data : A reference to a 16 bit integer that is going to // have data read in from this storage object. // // RETURNS // // AL_SUCCESS if all goes well. Otherwise, some error code < AL_STATUS. // // DESCRIPTION // // In order to make sure our archives can be read and written on all sorts // of systems, we have a few functions that are used to read numerical // data in a portable fashion. This function reads short integers in // little endian format (which is not native Intel format). The // complementary function, WritePortableShort(), writes short integers out // using the same format. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::ReadPortableShort( short int & short_data ) { short_data = (short int) ( ReadChar() << 8 ); short_data |= (short int) ReadChar(); return mStatus; } // // int ALStorage::ReadPortableLong( long int &short_data ) // // ARGUMENTS: // // long_data : A reference to a 32 bit integer that is going to // have data read in from this storage object. // // RETURNS // // AL_SUCCESS if all goes well. Otherwise, some error code < AL_STATUS. // // DESCRIPTION // // In order to make sure our archives can be read and written on all sorts // of systems, we have a few functions that are used to read numerical // data in a portable fashion. This function reads long integers in // little endian format (which is not native Intel format). The // complementary function, WritePortableLong(), writes long integers out // using the same format. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::ReadPortableLong( long & long_data ) { long_data = (long) ReadChar() << 24; long_data |= (long) ReadChar() << 16; long_data |= (long) ReadChar() << 8; long_data |= ReadChar(); return mStatus; } // // int ALStorage::WriteString( const char *string_data ) // // ARGUMENTS: // // string_data : A string to be written out in our portable format. // // RETURNS // // AL_SUCCESS if things work, or an error code < AL_SUCCESS if an error // occurs writing the data out. // // DESCRIPTION // // We write random length data to archive directories using this special // format, which is a 16 bit int describing the length of the data, // followed by the data itself. All of the storage objects and compression // engines write their own private data out using this format. This // means that even if another class doesn't understand the content of data // stored in this format, at least it knows how to read it in so as to // move past it. // // This function won't write just any random data, it is specifically // oriented towards C strings. This means it is mostly used to write // file names and comments. Their are a few places where classes // write private data that isn't kept in C strings, they just manually // write the length with WritePortableShort(), followed by the data. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::WriteString( const char *string_data ) { short unsigned int len; if ( string_data != 0 ) len = (short unsigned int) strlen( string_data ); else len = 0; WritePortableShort( len ); if ( len ) WriteBuffer( (unsigned char *) string_data, len ); return mStatus; } // PROTECTED MEMBER FUNCTION // // char * ALStorage::ReadString() // // ARGUMENTS: // // None. // // RETURNS // // A pointer to a string. This string has been allocated by the library, // which can cause a problem if you are using a DLL. If an EXE tried // to free a string pointer allocated by the DLL, havoc would result. // Because of this hassle, this is a protected function. // // The solution to this is to write a new version of this that returns // an ALName object. I thought of that, but too late. // // DESCRIPTION // // This function is used internally by ArchiveLib. It is used to read // random length blocks of data out of archives (or other storage objects). // // REVISION HISTORY // // May 26, 1994 1.0A : First release // char AL_DLL_FAR * AL_PROTO ALStorage::ReadString() { short int len; if ( ReadPortableShort( len ) < 0 ) return 0; char *new_string = new char[ len + 1 ]; if ( new_string ) { ReadBuffer( (unsigned char *) new_string, len ); new_string[ len ] = '\0'; return new_string; } else { mStatus.SetError( AL_CANT_ALLOCATE_MEMORY, "Error allocating buffer space in call " "to ReadString() for object %s", mName.GetSafeName() ); return 0; } } // // long ALStorage::Tell() // // ARGUMENTS: // // None. // // RETURNS // // A long integer indicating the current position of the read/write // pointer for the file. // // DESCRIPTION // // Because we are using buffered I/O here, figuring out the current // position of the read write pointer is just a tiny bit more complicated // than just checking a pointer. We have to find the physical location of // the file pointer, then add in any offset created by the presence of // data in the I/O buffer. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // long AL_PROTO ALStorage::Tell() { if ( muWriteIndex ) return mlFilePointer + muWriteIndex; else return mlFilePointer - muBufferValidData + muReadIndex; } // // void ALStorage::YieldTime() // // ARGUMENTS: // // None. // // RETURNS // // Nothing. // // DESCRIPTION // // This function has two important things to do. It gets called // at a few different points in the process of reading or writing data // from storage objects. During normal reading and writing, it // will get called every time the buffer is loaded or flushed. // // If we are in Windows mode, we execute a PeekMessage() loop. This // makes sure that we aren't hogging the CPU. By doing it this way, // the programmer can be ensure that he/she is being a good citizen // without any significant effort. // // The second important function is that of calling the monitor function. // The user interface elements need to be updated regularly, and this // is done via this call. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // void AL_PROTO ALStorage::YieldTime() { if ( mpMonitor ) mpMonitor->Progress( Tell(), *this ); /* * For right now I am going to put the PeekMessage loop in the load * buffer routine by default. Most Windows applications are going * to want to use this, right? */ #if defined( AL_WINDOWS_GUI ) MSG msg; while ( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) ) { TranslateMessage( &msg ); DispatchMessage(&msg); } #endif } // // int ALStorage::WriteStorageObjectData( ALStorage * archive ) // // ARGUMENTS: // // archive : A pointer to the storage object where we are going to // write the private data. // // RETURNS // // AL_SUCCESS if things went okay, otherwise an error code < AL_SUCCESS. // // DESCRIPTION // // All storage objects have the ability to create a private data block // that will be stored along with the directory when creating an archive. // None of the classes predefined in ArchiveLib use this data block, which // means they use this function instead of providing their own virtual // substitute. This function writes a private data block of exactly 0 // bytes in length. Our internal storage format means that a block // of 0 bytes length takes 2 bytes to store. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::WriteStorageObjectData( ALStorage * archive ) { return archive->WritePortableShort( 0 ); } // // int ALStorage::ReadStorageObjectData( ALStorage * archive ) // // ARGUMENTS: // // archive : A pointer to the storage object where we are going to // read in the private data.. // // RETURNS // // AL_SUCCESS if things went okay, otherwise an error code < AL_SUCCESS. // // DESCRIPTION // // All storage objects have the ability to create a private data block // that will be stored along with the directory when creating an archive. // None of the classes predefined in ArchiveLib use this data block, which // means they use this function instead of providing their own virtual // substitute. This function reads a private data block of exactly 0 // bytes in length. Our internal storage format means that a block // of 0 bytes length takes 2 bytes to store. // // In debug mode, we get really bent out of shape if this data block // doesn't look exactly like we expect it to. // // REVISION HISTORY // // May 26, 1994 1.0A : First release // int AL_PROTO ALStorage::ReadStorageObjectData( ALStorage * archive ) { short int temp; int status = archive->ReadPortableShort( temp ); AL_ASSERT( temp == 0, "ReadStorageObjectData: stored data is not null" ); return status; }